Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1428

Question Number 65911    Answers: 0   Comments: 1

Question Number 65901    Answers: 1   Comments: 0

Question Number 65884    Answers: 0   Comments: 3

Question Number 65878    Answers: 0   Comments: 5

Calculate lim_(a−>∞) ∫_0 ^∞ (dx/(1+x^a ))

$$\:\:{Calculate}\:\:\:{lim}_{{a}−>\infty} \:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\mathrm{1}+{x}^{{a}} }\: \\ $$

Question Number 65871    Answers: 0   Comments: 0

To: sirAjfour,sir:mrW1, sir:MJS by considering my comment on: Q#14535 and sir Ajfour and mrW1 answer′s to Q#62839,I think now we can solve Q#14535 .if you have time please try it.I know there is a relation between this questions.but can′t find it. kindly try it.thanks alot sir.

$$\mathrm{To}:\:\mathrm{sirAjfour},\mathrm{sir}:\mathrm{mrW1},\:\mathrm{sir}:\mathrm{MJS} \\ $$$$\mathrm{by}\:\mathrm{considering}\:\mathrm{my}\:\mathrm{comment}\:\mathrm{on}: \\ $$$$\mathrm{Q}#\mathrm{14535}\:\mathrm{and}\:\mathrm{sir}\:\mathrm{Ajfour}\:\mathrm{and}\:\mathrm{mrW1} \\ $$$$\mathrm{answer}'\mathrm{s}\:\mathrm{to}\:\mathrm{Q}#\mathrm{62839},\mathrm{I}\:\mathrm{think}\:\mathrm{now}\:\mathrm{we} \\ $$$$\mathrm{can}\:\mathrm{solve}\:\mathrm{Q}#\mathrm{14535}\:.\mathrm{if}\:\mathrm{you}\:\mathrm{have}\:\mathrm{time} \\ $$$$\mathrm{please}\:\mathrm{try}\:\mathrm{it}.\mathrm{I}\:\mathrm{know}\:\mathrm{there}\:\mathrm{is}\:\mathrm{a}\:\mathrm{relation} \\ $$$$\mathrm{between}\:\mathrm{this}\:\mathrm{questions}.\mathrm{but}\:\mathrm{can}'\mathrm{t}\:\mathrm{find}\:\mathrm{it}. \\ $$$$\mathrm{kindly}\:\mathrm{try}\:\mathrm{it}.\mathrm{thanks}\:\mathrm{alot}\:\mathrm{sir}. \\ $$

Question Number 65869    Answers: 1   Comments: 1

∫((2x^2 −3x+4)/(4x^3 +5)) dx

$$\int\frac{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{3}{x}+\mathrm{4}}{\mathrm{4}{x}^{\mathrm{3}} +\mathrm{5}}\:{dx} \\ $$

Question Number 65868    Answers: 0   Comments: 2

Question Number 65866    Answers: 0   Comments: 5

Question Number 65859    Answers: 1   Comments: 0

x^4 +5x^2 +20x+104=0 solve for x.

$${x}^{\mathrm{4}} +\mathrm{5}{x}^{\mathrm{2}} +\mathrm{20}{x}+\mathrm{104}=\mathrm{0} \\ $$$${solve}\:{for}\:{x}. \\ $$

Question Number 65858    Answers: 0   Comments: 3

Question Number 65853    Answers: 1   Comments: 0

x^4 −23x^2 +18x+40=0 solve for x.

$${x}^{\mathrm{4}} −\mathrm{23}{x}^{\mathrm{2}} +\mathrm{18}{x}+\mathrm{40}=\mathrm{0} \\ $$$${solve}\:{for}\:{x}. \\ $$

Question Number 65841    Answers: 1   Comments: 1

(d/dx)(((tan^2 x)/(1 + cos x))) =?

$$\:\frac{{d}}{{dx}}\left(\frac{{tan}\:^{\mathrm{2}} {x}}{\mathrm{1}\:+\:{cos}\:{x}}\right)\:=? \\ $$

Question Number 65837    Answers: 0   Comments: 4

1) calculate ∫_(−∞) ^∞ (dx/(1+ix)) and ∫_(−∞) ^∞ (dx/(1−ix)) 2)deduce the value of ∫_(−∞) ^∞ (dx/(1+x^2 )) 3)calculate ∫_(−∞) ^∞ (dx/(1+ix^2 )) and ∫_(−∞) ^∞ (dx/(1−ix^2 )) 4)deduce the value of ∫_(−∞) ^∞ (dx/(1+x^4 ))

$$\left.\mathrm{1}\right)\:{calculate}\:\int_{−\infty} ^{\infty} \:\frac{{dx}}{\mathrm{1}+{ix}}\:\:{and}\:\int_{−\infty} ^{\infty} \:\:\frac{{dx}}{\mathrm{1}−{ix}} \\ $$$$\left.\mathrm{2}\right){deduce}\:{the}\:{value}\:{of}\:\int_{−\infty} ^{\infty} \:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$$\left.\mathrm{3}\right){calculate}\:\int_{−\infty} ^{\infty} \:\:\frac{{dx}}{\mathrm{1}+{ix}^{\mathrm{2}} }\:\:{and}\:\int_{−\infty} ^{\infty} \:\frac{{dx}}{\mathrm{1}−{ix}^{\mathrm{2}} } \\ $$$$\left.\mathrm{4}\right){deduce}\:{the}\:{value}\:{of}\:\int_{−\infty} ^{\infty} \:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{4}} } \\ $$

Question Number 65834    Answers: 0   Comments: 1

∀ x, y >0 B(x,y)=∫_0 ^1 t^(x−1) (1−t)^(y−1) dt Γ(x)=∫_0 ^∞ t^(x−1) e^(−t) dt 1) show that ∀ x>0 Γ(x+1)=xΓ(x) and lim_(n−>∞) ((x(x+1)......(x+n))/(n^x n!))=(1/(Γ(x))) and deduce that lim_(n−>∞) ((Γ(x+n))/(n^x Γ(n)))=1 b) Prove that if a function f satisfies f(x+1)=xf(x) et lim_(n−>∞) ((f(x+n))/(n^x f(n)))=1 then ∀ x>0 f(x)= f(1)Γ(x) 3) Show that B(x+1, y)=(x/(x+y))B(x,y) B(1,x)=(1/x) 2) Now let consider ∀ y f(x)=((B(x,y)Γ(x+y))/(Γ(y))) Show that f verify the same property as Γ ( just the both proved up ) 3) Deduce that ∀ x,y>0 B(x,y)=((Γ(x)Γ(y))/(Γ(x+y)))

$$\:\:\:\forall\:\:{x},\:{y}\:\:>\mathrm{0}\:\:\:\:{B}\left({x},{y}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \:{t}^{{x}−\mathrm{1}} \left(\mathrm{1}−{t}\right)^{{y}−\mathrm{1}} {dt}\:\:\:\:\:\:\Gamma\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:{t}^{{x}−\mathrm{1}} \:{e}^{−{t}} {dt} \\ $$$$\left.\mathrm{1}\right)\:{show}\:{that}\:\:\forall\:{x}>\mathrm{0}\:\:\:\:\Gamma\left({x}+\mathrm{1}\right)={x}\Gamma\left({x}\right)\:\:\:\:{and}\:\:{lim}_{{n}−>\infty} \:\frac{{x}\left({x}+\mathrm{1}\right)......\left({x}+{n}\right)}{{n}^{{x}} {n}!}=\frac{\mathrm{1}}{\Gamma\left({x}\right)} \\ $$$${and}\:{deduce}\:{that}\:\:{lim}_{{n}−>\infty} \:\frac{\Gamma\left({x}+{n}\right)}{{n}^{{x}} \:\Gamma\left({n}\right)}=\mathrm{1} \\ $$$$\left.{b}\right)\:{Prove}\:{that}\:{if}\:\:{a}\:\:{function}\:{f}\:{satisfies}\:\:{f}\left({x}+\mathrm{1}\right)={xf}\left({x}\right)\:\:{et}\:\:\:{lim}_{{n}−>\infty} \:\:\frac{{f}\left({x}+{n}\right)}{{n}^{{x}} \:{f}\left({n}\right)}=\mathrm{1}\:\:{then}\:\forall\:{x}>\mathrm{0}\:\:{f}\left({x}\right)=\:{f}\left(\mathrm{1}\right)\Gamma\left({x}\right) \\ $$$$\left.\mathrm{3}\right)\:\:{Show}\:{that}\:\:{B}\left({x}+\mathrm{1},\:{y}\right)=\frac{{x}}{{x}+{y}}{B}\left({x},{y}\right)\:\:\:\:\:\:{B}\left(\mathrm{1},{x}\right)=\frac{\mathrm{1}}{{x}}\: \\ $$$$\left.\mathrm{2}\right)\:{Now}\:{let}\:{consider}\:\forall\:{y}\:\:\:{f}\left({x}\right)=\frac{{B}\left({x},{y}\right)\Gamma\left({x}+{y}\right)}{\Gamma\left({y}\right)}\: \\ $$$${Show}\:{that}\:\:{f}\:\:{verify}\:\:{the}\:\:{same}\:{property}\:{as}\:\Gamma\:\:\left(\:{just}\:{the}\:{both}\:{proved}\:{up}\:\right)\: \\ $$$$\left.\mathrm{3}\right)\:{Deduce}\:\:{that}\:\forall\:{x},{y}>\mathrm{0}\:\:\:{B}\left({x},{y}\right)=\frac{\Gamma\left({x}\right)\Gamma\left({y}\right)}{\Gamma\left({x}+{y}\right)} \\ $$

Question Number 65830    Answers: 1   Comments: 3

Question Number 65828    Answers: 0   Comments: 1

Let go toward a rational order of derivation Part 1 : What′s that special factor Let n , p and k three integer different of zero We state J_(n,k) (p)=∫_0 ^1 (1−x^n )^(p+(k/n)) dx and C_n (p)=Π_(k=0) ^(n−1) J_(n,k) (p) 1) a) Calculate C_1 (p) b) Prove that J_(n,k) (p)=(1/n)B((1/n),p+1+(k/n) ) and explicit C_n (p)in terms of n and p 2) Deduce that ∀ n>0 there exist a real a_n such as (na_n )^n C_n (p)= (1/(p+1)) 3) Study the convergence of the result suite (a_n )_n .Then show that lim_(n−>∞) na_n =1 Part 2: the rational order of derivation Let f ∈ C^1 (R,R) . We consider I_(1/n) (f) a function defined on R_+ by I_(1/n) (f)(x)= a_n ∫_0 ^x ((f(t))/((x−t)^(1−(1/n)) ))dt and D_(1/n) (f) = (I_(1/n) (f))^((1)) 1) a _ Prove that I_((1/n) ) (f)(x)= na_n x^(1/n) ∫_0 ^1 f(x(1−v^n ))dv then find D_(1/2) (t) b) Show that ∀ f∈C^1 (R,R) ∀ x∈R_(+ ) D_(1/n) (f)(x)= I_(1/n) (f)(x) + ((f(0))/((πx)^(1−(1/n)) )) 2)∀ p integer and k∈{0,...,n−1} explicit I_(1/n) (t^(p+(k/n)) ) in term of I_(n,k) (p) b) Prove that for polynomial function f the n− th composition I_(1/n) ._ ....I_(1/n) (f)(x)=∫_0 ^x f(t)dt , c) Deduce that ∀ f polynomial the function g =f −f(0) verify D_(1/n) ......D_(1/n) (g)(x) = g(x) 3) Widen that two formulas to all function that can be developp into integer serie 4) Try to find the relation between D_(1/n) .I_(1/n) (f) , I_(1/n) .D_(1/n) (f), and f 4) Show that ∀ x∈R_+ lim_(n−>∞) I_(1/n) (f)(x)= ∫_0 ^x f(t)dt pour g=f−f(0) lim_(n−>∞) D_(1/n) (g)(x)= g(x) conclusion the derivative of the function I_α (f) defined on R_+ by I_α (f)(x)= a_n ∫_0 ^x f(t)(x−t)^((1/n)−1) dt is called the derivative of order α

$$\:{Let}\:{go}\:{toward}\:{a}\:{rational}\:{order}\:{of}\:{derivation} \\ $$$$ \\ $$$${Part}\:\mathrm{1}\::\:\:{What}'{s}\:{that}\:{special}\:{factor}\:\: \\ $$$${Let}\:{n}\:,\:{p}\:{and}\:{k}\:{three}\:{integer}\:\:{different}\:{of}\:{zero} \\ $$$${We}\:\:{state}\:{J}_{{n},{k}} \left({p}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\left(\mathrm{1}−{x}^{{n}} \right)^{{p}+\frac{{k}}{{n}}} {dx}\:\:\:{and}\:\:{C}_{{n}} \left({p}\right)=\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\:{J}_{{n},{k}} \left({p}\right) \\ $$$$\left.\mathrm{1}\left.\right)\:{a}\right)\:{Calculate}\:{C}_{\mathrm{1}} \left({p}\right)\:\: \\ $$$$\left.\:\:\:\:{b}\right)\:{Prove}\:{that}\:\:{J}_{{n},{k}} \left({p}\right)=\frac{\mathrm{1}}{{n}}{B}\left(\frac{\mathrm{1}}{{n}},{p}+\mathrm{1}+\frac{{k}}{{n}}\:\right)\:\:\:{and}\:\:{explicit}\:\:{C}_{{n}} \left({p}\right){in}\:{terms}\:{of}\:\:{n}\:{and}\:{p}\: \\ $$$$\left.\mathrm{2}\right)\:{Deduce}\:{that}\:\forall\:{n}>\mathrm{0}\:\:\:\:{there}\:{exist}\:{a}\:{real}\:{a}_{{n}} \:{such}\:{as}\:\:\left({na}_{{n}} \right)^{{n}} {C}_{{n}} \left({p}\right)=\:\frac{\mathrm{1}}{{p}+\mathrm{1}}\: \\ $$$$\left.\mathrm{3}\right)\:{Study}\:{the}\:{convergence}\:{of}\:{the}\:{result}\:{suite}\:\left({a}_{{n}} \right)_{{n}} \:\:\:.{Then}\:{show}\:{that}\:{lim}_{{n}−>\infty} \:{na}_{{n}} \:=\mathrm{1} \\ $$$${Part}\:\mathrm{2}:\:\:{the}\:{rational}\:{order}\:{of}\:{derivation} \\ $$$${Let}\:\:{f}\:\in\:{C}^{\mathrm{1}} \left(\mathbb{R},\mathbb{R}\right)\:.\:{We}\:\:{consider}\:{I}_{\frac{\mathrm{1}}{{n}}} \left({f}\right)\:{a}\:{function}\:{defined}\:{on}\:\mathbb{R}_{+} \:{by}\:\:\: \\ $$$${I}_{\frac{\mathrm{1}}{{n}}} \left({f}\right)\left({x}\right)=\:{a}_{{n}} \int_{\mathrm{0}} ^{{x}} \:\:\frac{{f}\left({t}\right)}{\left({x}−{t}\right)^{\mathrm{1}−\frac{\mathrm{1}}{{n}}} }{dt}\:\:\:\:\:\:\:{and}\:\:{D}_{\frac{\mathrm{1}}{{n}}} \left({f}\right)\:=\:\left({I}_{\frac{\mathrm{1}}{{n}}} \left({f}\right)\right)^{\left(\mathrm{1}\right)} \:\: \\ $$$$\left.\mathrm{1}\right)\:{a}\:\_\:\:{Prove}\:{that}\:{I}_{\frac{\mathrm{1}}{{n}}\:} \left({f}\right)\left({x}\right)=\:{na}_{{n}} {x}^{\frac{\mathrm{1}}{{n}}} \:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{f}\left({x}\left(\mathrm{1}−{v}^{{n}} \right)\right){dv}\:\:\:{then}\:{find}\:{D}_{\frac{\mathrm{1}}{\mathrm{2}}} \left({t}\right) \\ $$$$\left.\:\:{b}\right)\:\:{Show}\:{that}\:\:\forall\:{f}\in{C}^{\mathrm{1}} \left(\mathbb{R},\mathbb{R}\right)\:\forall\:{x}\in\mathbb{R}_{+\:\:} \:{D}_{\frac{\mathrm{1}}{{n}}} \left({f}\right)\left({x}\right)=\:{I}_{\frac{\mathrm{1}}{{n}}} \left({f}\right)\left({x}\right)\:\:+\:\frac{{f}\left(\mathrm{0}\right)}{\left(\pi{x}\right)^{\mathrm{1}−\frac{\mathrm{1}}{{n}}} } \\ $$$$\left.\mathrm{2}\right)\forall\:{p}\:{integer}\:{and}\:\:{k}\in\left\{\mathrm{0},...,{n}−\mathrm{1}\right\}\:\:{explicit}\:\:{I}_{\frac{\mathrm{1}}{{n}}} \left({t}^{{p}+\frac{{k}}{{n}}} \right)\:{in}\:{term}\:{of}\:\:{I}_{{n},{k}} \left({p}\right) \\ $$$$\left.{b}\right)\:{Prove}\:{that}\:{for}\:{polynomial}\:{function}\:{f}\:\:\:{the}\:{n}−\:{th}\:{composition}\:\:{I}_{\frac{\mathrm{1}}{{n}}} ._{} ....{I}_{\frac{\mathrm{1}}{{n}}} \left({f}\right)\left({x}\right)=\int_{\mathrm{0}} ^{{x}} {f}\left({t}\right){dt}\:\:\:\:\:,\:\: \\ $$$$\left.\:{c}\right)\:{Deduce}\:{that}\:\forall\:\:{f}\:\:{polynomial}\:\:{the}\:{function}\:{g}\:={f}\:−{f}\left(\mathrm{0}\right)\:{verify} \\ $$$${D}_{\frac{\mathrm{1}}{{n}}} ......{D}_{\frac{\mathrm{1}}{{n}}} \left({g}\right)\left({x}\right)\:=\:{g}\left({x}\right) \\ $$$$\left.\mathrm{3}\right)\:{Widen}\:{that}\:{two}\:{formulas}\:{to}\:{all}\:\:{function}\:{that}\:{can}\:{be}\:{developp}\:{into}\:{integer}\:{serie} \\ $$$$\left.\mathrm{4}\right)\:{Try}\:{to}\:{find}\:{the}\:{relation}\:{between}\:\:{D}_{\frac{\mathrm{1}}{{n}}} .{I}_{\frac{\mathrm{1}}{{n}}} \left({f}\right)\:,\:\:{I}_{\frac{\mathrm{1}}{{n}}} .{D}_{\frac{\mathrm{1}}{{n}}} \left({f}\right),\:{and}\:\:{f}\:\: \\ $$$$\left.\mathrm{4}\right)\:{Show}\:\:{that}\:\forall\:{x}\in\mathbb{R}_{+} \:\:{lim}_{{n}−>\infty} \:\:{I}_{\frac{\mathrm{1}}{{n}}} \left({f}\right)\left({x}\right)=\:\int_{\mathrm{0}} ^{{x}} \:{f}\left({t}\right){dt}\:\:\:\:\:\:\: \\ $$$${pour}\:\:{g}={f}−{f}\left(\mathrm{0}\right)\:\:\:{lim}_{{n}−>\infty} \:\:{D}_{\frac{\mathrm{1}}{{n}}} \left({g}\right)\left({x}\right)=\:{g}\left({x}\right) \\ $$$${conclusion} \\ $$$$\:{the}\:{derivative}\:{of}\:{the}\:{function}\:{I}_{\alpha} \:\left({f}\right)\:\:{defined}\:{on}\:\mathbb{R}_{+} \:\:{by}\: \\ $$$${I}_{\alpha} \left({f}\right)\left({x}\right)=\:{a}_{{n}} \int_{\mathrm{0}} ^{{x}} \:{f}\left({t}\right)\left({x}−{t}\right)^{\frac{\mathrm{1}}{{n}}−\mathrm{1}} {dt}\:\:{is}\:\:{called}\:{the}\:\:{derivative}\:{of}\:{order}\:\alpha \\ $$$$ \\ $$

Question Number 65827    Answers: 0   Comments: 0

Prove that ∫_0 ^1 (∫_(1/6) ^(5/6) (dv/((1−^v (√u) )^v )))du=ln2−2ln((√3)−1)

$${Prove}\:{that}\:\: \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \left(\int_{\frac{\mathrm{1}}{\mathrm{6}}} ^{\frac{\mathrm{5}}{\mathrm{6}}} \:\:\frac{{dv}}{\left(\mathrm{1}−\:^{{v}} \sqrt{{u}}\:\right)^{{v}} }\right){du}={ln}\mathrm{2}−\mathrm{2}{ln}\left(\sqrt{\mathrm{3}}−\mathrm{1}\right) \\ $$

Question Number 65825    Answers: 0   Comments: 0

let consider two real numbers p and such as p^2 −q^2 =pq Prove that J= ∫_0 ^∞ (dv/(^q (√((1+^q (√(v^p )) )^p ))))= 1

$${let}\:{consider}\:\:{two}\:{real}\:{numbers}\:{p}\:{and}\:{such}\:{as}\:{p}^{\mathrm{2}} −{q}^{\mathrm{2}} ={pq} \\ $$$${Prove}\:{that} \\ $$$$\:\:\:{J}=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dv}}{\:^{{q}} \sqrt{\left(\mathrm{1}+\:^{{q}} \sqrt{{v}^{{p}} \:}\:\right)^{{p}} }}=\:\mathrm{1} \\ $$$$ \\ $$

Question Number 65805    Answers: 2   Comments: 1

Prove that I_n =∫_0 ^(π/2) (dt/(1+(tant)^n )) does not depend of the term n deduces that ∫_0 ^∞ (dx/((x^(2035) +1)(x^2 +1)))=(π/4)

$$\:\:{Prove}\:{that}\:\:{I}_{{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{dt}}{\mathrm{1}+\left({tant}\right)^{{n}} }\:\:{does}\:{not}\:{depend}\:{of}\:{the}\:{term}\:{n} \\ $$$${deduces}\:{that} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left({x}^{\mathrm{2035}} +\mathrm{1}\right)\left({x}^{\mathrm{2}} +\mathrm{1}\right)}=\frac{\pi}{\mathrm{4}} \\ $$

Question Number 65797    Answers: 1   Comments: 0

find the constant a,b and c so that the direction derivative of Φ=axy^2 +byz+cz^2 x^3 at (1,2,−1) has a maximum of magnitude 64 jn a direction parallel to the z axis.

$${find}\:{the}\:{constant}\:\:{a},{b}\:{and}\:\:{c}\:\:{so} \\ $$$${that}\:{the}\:{direction}\:{derivative}\:{of} \\ $$$$\Phi={axy}^{\mathrm{2}} +{byz}+{cz}^{\mathrm{2}} {x}^{\mathrm{3}} \:{at}\:\left(\mathrm{1},\mathrm{2},−\mathrm{1}\right) \\ $$$${has}\:{a}\:{maximum}\:{of}\:{magnitude} \\ $$$$\mathrm{64}\:{jn}\:{a}\:{direction}\:{parallel}\:{to}\:{the} \\ $$$${z}\:{axis}. \\ $$

Question Number 65788    Answers: 0   Comments: 0

Explicit f(a.b.c)=∫_0 ^(π/2) ((sec(x−a))/(b.cosx + c.sinx)) dx

$${Explicit}\:\:\:{f}\left({a}.{b}.{c}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{sec}\left({x}−{a}\right)}{{b}.{cosx}\:+\:{c}.{sinx}}\:{dx} \\ $$$$ \\ $$

Question Number 65786    Answers: 0   Comments: 0

Shows that ∣Γ(1+ix)∣^2 =(π/(xsinh(πx))) with Γ(z)=∫_0_ ^∞ t^(z−1) e^(−t) dt Then Prove that ∫_0 ^∞ ∣Γ(1+ix)∣^2 dx =(π/4)

$$\:{Shows}\:{that}\:\:\mid\Gamma\left(\mathrm{1}+{ix}\right)\mid^{\mathrm{2}} =\frac{\pi}{{xsinh}\left(\pi{x}\right)}\:\:\:\:\:\:{with}\:\Gamma\left({z}\right)=\int_{\mathrm{0}_{} } ^{\infty} \:{t}^{{z}−\mathrm{1}} {e}^{−{t}} {dt} \\ $$$${Then}\:{Prove}\:{that}\:\:\int_{\mathrm{0}} ^{\infty} \:\mid\Gamma\left(\mathrm{1}+{ix}\right)\mid^{\mathrm{2}} \:{dx}\:=\frac{\pi}{\mathrm{4}} \\ $$

Question Number 65782    Answers: 0   Comments: 4

Evaluate ∫_0 ^2 (3x^2 −2x + 4)^7 dx hence show that (d/dx)(coshx) = sinh x

$$\:{Evaluate}\:\int_{\mathrm{0}} ^{\mathrm{2}} \left(\mathrm{3}{x}^{\mathrm{2}} −\mathrm{2}{x}\:+\:\mathrm{4}\right)^{\mathrm{7}} {dx} \\ $$$${hence}\:{show}\:{that}\:\:\frac{{d}}{{dx}}\left({coshx}\right)\:=\:{sinh}\:{x} \\ $$

Question Number 65781    Answers: 1   Comments: 0

If xyz ≠ 0 and x+y+z=0 a=10^z b=10^y c=10^x then a^(((1/y)+(1/z))) . b^(((1/z)+(1/x))) .c^(((1/x)+(1/y))) =... a. 0.001 b. 0.01 c. 0.1 d. 1 e. 10

$$\mathrm{If}\:{xyz}\:\neq\:\mathrm{0}\:\mathrm{and}\:{x}+{y}+{z}=\mathrm{0} \\ $$$${a}=\mathrm{10}^{{z}} \\ $$$${b}=\mathrm{10}^{{y}} \\ $$$${c}=\mathrm{10}^{{x}} \\ $$$$\mathrm{then} \\ $$$${a}^{\left(\frac{\mathrm{1}}{{y}}+\frac{\mathrm{1}}{{z}}\right)} .\:{b}^{\left(\frac{\mathrm{1}}{{z}}+\frac{\mathrm{1}}{{x}}\right)} .{c}^{\left(\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}\right)} =... \\ $$$${a}.\:\mathrm{0}.\mathrm{001} \\ $$$${b}.\:\mathrm{0}.\mathrm{01} \\ $$$${c}.\:\mathrm{0}.\mathrm{1} \\ $$$${d}.\:\mathrm{1} \\ $$$${e}.\:\mathrm{10} \\ $$$$ \\ $$

Question Number 65779    Answers: 0   Comments: 1

calculate lim_(x→0) ((sin(x^2 )−xtan(x))/(1−cos(4x)))

$${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\:\:\frac{{sin}\left({x}^{\mathrm{2}} \right)−{xtan}\left({x}\right)}{\mathrm{1}−{cos}\left(\mathrm{4}{x}\right)} \\ $$

Question Number 65778    Answers: 0   Comments: 1

find lim_(n→+∞) e^(−n^2 ) (n+1)^(n!)

$${find}\:{lim}_{{n}\rightarrow+\infty} \:{e}^{−{n}^{\mathrm{2}} } \left({n}+\mathrm{1}\right)^{{n}!} \\ $$

  Pg 1423      Pg 1424      Pg 1425      Pg 1426      Pg 1427      Pg 1428      Pg 1429      Pg 1430      Pg 1431      Pg 1432   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com