Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1428
Question Number 67921 Answers: 0 Comments: 0
$$\int{e}^{{y}^{\mathrm{2}} /\mathrm{2}} {dy} \\ $$
Question Number 67920 Answers: 0 Comments: 0
Question Number 67907 Answers: 1 Comments: 1
Question Number 67903 Answers: 2 Comments: 0
Question Number 67902 Answers: 0 Comments: 0
$${differential}\:{equation} \\ $$$${homogenous}. \\ $$$$ \\ $$$${please}\:{answer}\:{this}.{with}\:{p}.{s}. \\ $$$${xydx}+\mathrm{2}\left({x}^{\mathrm{2}} +\mathrm{2}{y}^{\mathrm{2}} \right){dy}=\mathrm{0} \\ $$$${x}=\mathrm{0} \\ $$$${y}=\mathrm{1} \\ $$
Question Number 67900 Answers: 0 Comments: 0
$${homogenous}\:{differential}\:{equation}. \\ $$$${please}\:{answer}. \\ $$$${y}\left({x}^{\mathrm{2}} +{xy}−\mathrm{2}{y}^{\mathrm{2}} \right){dx}+{x}\left(\mathrm{3}{y}^{\mathrm{2}} −{xy}−{x}^{\mathrm{2}} \right)\mathrm{2}{y}=\mathrm{0} \\ $$$$ \\ $$$${can}\:{someone}\:{answer}\:{this}?? \\ $$
Question Number 67899 Answers: 1 Comments: 2
$${homogenous}\:{differential}\:{equation}. \\ $$$$ \\ $$$$\left(\mathrm{2}{xy}+{y}^{\mathrm{2}} \right){dr}−\mathrm{2}{x}^{\mathrm{2}} {dy}=\mathrm{0} \\ $$$${y}={e} \\ $$$${x}={e} \\ $$
Question Number 67898 Answers: 0 Comments: 0
$$ \\ $$$${differential}\:{equation}. \\ $$$${homogenous}. \\ $$$$ \\ $$$${ydx}+\left(\mathrm{2}{x}+\mathrm{3}{y}\right){dy}=\mathrm{0} \\ $$$$ \\ $$
Question Number 67881 Answers: 1 Comments: 0
$${find}\:{all}\:{x},{y}\:\in{R}\:{such}\:{that} \\ $$$$\left({x}+{yi}\right)^{\mathrm{2019}} ={x}−{yi} \\ $$
Question Number 67871 Answers: 1 Comments: 1
$$\mathrm{8}=\mathrm{4x} \\ $$$$\mathrm{x}=? \\ $$
Question Number 67860 Answers: 1 Comments: 3
Question Number 67852 Answers: 1 Comments: 4
Question Number 67851 Answers: 0 Comments: 5
$${find}\:\int\:\:\frac{{dx}}{{x}^{\mathrm{2}} −{z}}\:\:{with}\:{z}\:{from}\:{C}\:. \\ $$
Question Number 67850 Answers: 0 Comments: 1
$${calculate}\:\int_{−\infty} ^{+\infty} \:\:\frac{{dx}}{{x}^{\mathrm{2}} −{z}}\:\:{with}\:{z}\:{from}\:{C} \\ $$
Question Number 67849 Answers: 1 Comments: 7
Question Number 67844 Answers: 0 Comments: 2
$${x}^{\mathrm{2}} +\mid{x}\mid−\mathrm{6}=\mathrm{0} \\ $$
Question Number 67836 Answers: 0 Comments: 0
$$\mathrm{If}\:\begin{vmatrix}{{x}^{{n}} }&{{x}^{{n}+\mathrm{2}} }&{{x}^{{n}+\mathrm{3}} }\\{{y}^{{n}} }&{{y}^{{n}+\mathrm{2}} }&{{y}^{{n}+\mathrm{3}} }\\{{z}^{{n}} }&{{z}^{{n}+\mathrm{2}} }&{{z}^{{n}+\mathrm{3}} }\end{vmatrix} \\ $$$$=\:\left({x}−{y}\right)\left({y}−{z}\right)\left({z}−{x}\right)\left(\frac{\mathrm{1}}{{x}}\:+\:\frac{\mathrm{1}}{{y}}\:+\:\frac{\mathrm{1}}{{z}}\right), \\ $$$$\mathrm{then}\:{n}\:\mathrm{equals} \\ $$
Question Number 67835 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{2}} {x}\left(\mathrm{8}−{x}^{\mathrm{3}} \right)^{\frac{\mathrm{1}}{\mathrm{3}}} {dx} \\ $$
Question Number 67826 Answers: 2 Comments: 4
Question Number 67823 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{lnx}+{e}^{{lnx}/{x}} } {dx} \\ $$
Question Number 67820 Answers: 0 Comments: 1
$${x}^{\mathrm{3}} −{x}^{\mathrm{2}} −\mathrm{6}{x} \\ $$
Question Number 67819 Answers: 0 Comments: 1
$${y}={x}^{\mathrm{5}} +{ax}^{\mathrm{4}} +{bx}^{\mathrm{3}} +{cx}^{\mathrm{2}} +{dx}+{e} \\ $$$${If}\:{we}\:{let}\:{x}={t}+{h} \\ $$$${can}\:{we}\:{find}\:{h}\:{in}\:{terms}\:{of}\:{a},{b},{c},{d},{e} \\ $$$${such}\:{that} \\ $$$${y}=\left({t}+{R}\right)\left({t}^{\mathrm{2}} +{pt}+{q}\right)\left({t}^{\mathrm{2}} +{s}\right) \\ $$$${this}\:{means}\:{two}\:{roots}\:{are}\:{of} \\ $$$${opposite}\:{sign},\:{of}\:{course}\:{its} \\ $$$${possible}\:{by}\:{shifting}\:{the}\:{curve} \\ $$$${along}\:{x},\:{but}\:{can}\:{we}\:{find}\:{the} \\ $$$${shift}\:\boldsymbol{{h}}\:? \\ $$
Question Number 67807 Answers: 1 Comments: 2
Question Number 67799 Answers: 1 Comments: 3
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:−{e}^{{ia}} \right)\left({x}^{\mathrm{2}} −{e}^{{ib}} \right)}\:\:{with}\:{a}>\mathrm{0}\:{andb}>\mathrm{0} \\ $$
Question Number 67795 Answers: 0 Comments: 2
$${let}\:\:{A}_{{p}} =\int_{\mathrm{0}} ^{\pi} \:{x}^{{p}} \:{cos}\left({nx}\right){dx} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{A}_{\mathrm{0}} ,{A}_{\mathrm{1}} ,{A}_{\mathrm{2}} \\ $$$$\left.\mathrm{2}\right){determine}\:{a}\:{relation}\:{of}\:{recurrence}\:{between}\:\:{A}_{{p}} \\ $$
Question Number 67775 Answers: 2 Comments: 0
Pg 1423 Pg 1424 Pg 1425 Pg 1426 Pg 1427 Pg 1428 Pg 1429 Pg 1430 Pg 1431 Pg 1432
Terms of Service
Privacy Policy
Contact: info@tinkutara.com