Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1423
Question Number 62281 Answers: 1 Comments: 0
$$\begin{cases}{\boldsymbol{\mathrm{x}}^{\mathrm{3}} +\boldsymbol{\mathrm{y}}^{\mathrm{3}} =\mathrm{3}\boldsymbol{\mathrm{xy}}}\\{\boldsymbol{\mathrm{x}}^{\mathrm{4}} +\boldsymbol{\mathrm{y}}^{\mathrm{4}} =\mathrm{4}\boldsymbol{\mathrm{xy}}}\end{cases}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[\boldsymbol{\mathrm{x}},\boldsymbol{\mathrm{y}}\neq\mathrm{0}\right] \\ $$
Question Number 62276 Answers: 1 Comments: 0
$$\begin{cases}{\frac{\sqrt{\boldsymbol{\mathrm{x}}}}{\boldsymbol{\mathrm{a}}}+\frac{\sqrt{\boldsymbol{\mathrm{y}}}}{\boldsymbol{\mathrm{b}}}=\mathrm{1}}\\{\frac{\sqrt{\boldsymbol{\mathrm{a}}}}{\boldsymbol{\mathrm{x}}}+\frac{\sqrt{\boldsymbol{\mathrm{b}}}}{\boldsymbol{\mathrm{y}}}=\mathrm{1}}\end{cases}\:\:\:\boldsymbol{\mathrm{a}},\boldsymbol{\mathrm{b}}\in\mathrm{R}^{+} \\ $$
Question Number 62275 Answers: 1 Comments: 0
$$\begin{cases}{\boldsymbol{\mathrm{a}}\sqrt{\boldsymbol{\mathrm{x}}}+\boldsymbol{\mathrm{b}}\sqrt{\boldsymbol{\mathrm{y}}}=\mathrm{2}\sqrt{\boldsymbol{\mathrm{ab}}}}\\{\boldsymbol{\mathrm{x}}\sqrt{\boldsymbol{\mathrm{a}}}+\boldsymbol{\mathrm{y}}\sqrt{\boldsymbol{\mathrm{b}}}=\mathrm{2}\sqrt{\boldsymbol{\mathrm{ab}}}}\end{cases}\:\:\:\:\:\:\boldsymbol{\mathrm{a}},\boldsymbol{\mathrm{b}}\in\mathrm{R}^{+} \\ $$
Question Number 62274 Answers: 1 Comments: 4
$$\underset{\mathrm{0}} {\overset{\infty} {\int}}{e}^{−{x}^{\mathrm{2}} } \:{dx} \\ $$
Question Number 62273 Answers: 0 Comments: 4
$${Mr}.\:{Rasheed}.{Sindhi}\: \\ $$$${I}\:{sense}\:{you}'{re}\:{much}\:{engaged}\:{in}\:{making}\: \\ $$$${olympiad}\:{contents}\:{these}\:{days}\:,\:{I}\:{wish}\: \\ $$$${that}\:{you}\:{join}\:{my}\:{workspace}\:{concerning}\:{that}\:{same}. \\ $$
Question Number 62266 Answers: 1 Comments: 1
$$\int\frac{\mathrm{2}{sin}\left({x}\right)+\mathrm{3}{cos}\left({x}\right)}{\mathrm{3}{sin}\left({x}\right)+\mathrm{4}{cos}\left({x}\right)}{dx} \\ $$
Question Number 62265 Answers: 1 Comments: 1
Question Number 62263 Answers: 1 Comments: 0
Question Number 62262 Answers: 1 Comments: 1
$${find}\:{the}\:{value}\:{of}\: \\ $$$${I}\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{t}} {sint}}{\sqrt{{t}}}{dt}\:\:{and}\:{J}\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{t}} {cos}\left({t}\right)}{\sqrt{{t}}}{dt}\:\:,{study}\:{first}\:{the}\:{convergence}. \\ $$
Question Number 62252 Answers: 0 Comments: 1
$$\int\mathrm{ln}\left(\mathrm{x}+\mathrm{1}\right)/\left(\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{1}\right) \\ $$$$\mathrm{limit}\:=\left\{\:\mathrm{0}>\mathrm{2}\right\} \\ $$
Question Number 62251 Answers: 0 Comments: 1
$$\int\left(\mathrm{x}^{\mathrm{2}} −\mathrm{4}\right)^{\mathrm{1}/\mathrm{2}} \mathrm{dx} \\ $$$$\mathrm{trig}\:\mathrm{substitution}\:\mathrm{only} \\ $$
Question Number 62244 Answers: 1 Comments: 3
$$\mathrm{Find}\:\mathrm{out}\:\mathrm{x},\mathrm{y},\:\mathrm{such}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\mathrm{gcd}\left(\mathrm{x}^{\mathrm{3}} ,\mathrm{y}^{\mathrm{2}} \right)=\mathrm{gcd}\left(\mathrm{x}^{\mathrm{2}} ,\mathrm{y}^{\mathrm{3}} \right) \\ $$
Question Number 62242 Answers: 2 Comments: 1
$$\mathrm{Find}\:\mathrm{out}\:\mathrm{x},\mathrm{y}\:\mathrm{such}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{lcm}\left(\mathrm{x},\mathrm{y}\right)=\mathrm{180}\:\wedge\:\mathrm{gcd}\left(\mathrm{x},\mathrm{y}\right)=\mathrm{45} \\ $$
Question Number 62234 Answers: 1 Comments: 0
Question Number 62232 Answers: 0 Comments: 4
Question Number 62228 Answers: 0 Comments: 2
$$\begin{cases}{\sqrt{\boldsymbol{\mathrm{a}}+\boldsymbol{\mathrm{x}}}+\sqrt{\boldsymbol{\mathrm{a}}−\boldsymbol{\mathrm{y}}}=\mathrm{2}\boldsymbol{\mathrm{a}}}\\{\sqrt{\boldsymbol{\mathrm{a}}−\boldsymbol{\mathrm{x}}}+\sqrt{\boldsymbol{\mathrm{a}}+\boldsymbol{\mathrm{y}}}=\mathrm{2}\boldsymbol{\mathrm{a}}}\end{cases}\:\:\:\:\:\boldsymbol{\mathrm{a}}\in\boldsymbol{\mathrm{R}}. \\ $$
Question Number 62227 Answers: 0 Comments: 3
$$\mathrm{1}.\int\sqrt{\mathrm{1}+\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\boldsymbol{\mathrm{x}}^{\mathrm{3}} \:\:}\boldsymbol{\mathrm{dx}}=? \\ $$$$\mathrm{2}.\int\:\:\:\frac{\sqrt{\mathrm{1}−\boldsymbol{\mathrm{tgx}}}}{\boldsymbol{\mathrm{sinx}}}\:\:\boldsymbol{\mathrm{dx}}=? \\ $$$$\mathrm{3}.\int\:\:\:\boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{x}}} .\boldsymbol{\mathrm{ln}}\left(\mathrm{1}+\sqrt{\mathrm{1}+\boldsymbol{\mathrm{x}}^{\mathrm{2}} }\right)\boldsymbol{\mathrm{dx}}=? \\ $$$$\mathrm{4}.\int\:\:\frac{\boldsymbol{\mathrm{sinx}}}{\mathrm{1}+\boldsymbol{\mathrm{sinx}}+\boldsymbol{\mathrm{sin}}\mathrm{2}\boldsymbol{\mathrm{x}}}\:\boldsymbol{\mathrm{dx}}=? \\ $$
Question Number 62225 Answers: 0 Comments: 4
$${let}\:{j}\:={e}^{\frac{{i}\mathrm{2}\pi}{\mathrm{3}}} \:\:\:{and}\:{P}\left({x}\right)\:=\left(\mathrm{1}+{jx}\right)^{{n}} −\left(\mathrm{1}−{jx}\right)^{{n}} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{P}\left({x}\right)\:{at}\:{form}\:{of}\:{arctan} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{roots}\:{of}\:{P}\left({x}\right) \\ $$$$\left.\mathrm{3}\right){factorize}\:{inside}\:{C}\left[{x}\right]\:\:{the}\:{polynome}\:{P}\left({x}\right) \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{P}\left({x}\right){dx} \\ $$
Question Number 62241 Answers: 1 Comments: 0
$$\boldsymbol{{if}}\:\boldsymbol{{the}}\:\boldsymbol{{point}}\:{A}\:{B}\:{C}\:{with}\:{position}\:{vector}\: \\ $$$$\left(\mathrm{20}\hat {{i}}+\lambda\hat {{j}}\right)\:\left(\mathrm{5}\hat {{i}}−\hat {{j}}\right)\:{and}\left(\mathrm{10}\hat {{i}}−\mathrm{13}\hat {{j}}\right)\:{are} \\ $$$${collinear}\:{then}\:{the}\:{value}\:{of}\:\lambda\:{is}: \\ $$
Question Number 62220 Answers: 0 Comments: 2
$${let}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\:\frac{{t}^{\mathrm{2}} }{{x}^{\mathrm{6}} \:\:+{t}^{\mathrm{6}} }\:{dt}\:\:\:\:\:\:{with}\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{g}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{t}^{\mathrm{2}} }{\left({x}^{\mathrm{6}} \:+{t}^{\mathrm{6}} \right)^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{values}\:{of}\:{integrals}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{t}^{\mathrm{2}} }{{t}^{\mathrm{6}} \:+\mathrm{8}}{dt}\:\:\:\:{and}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{t}^{\mathrm{2}} }{\left({t}^{\mathrm{6}} +\mathrm{8}\right)^{\mathrm{2}} }{dt}\:. \\ $$
Question Number 62214 Answers: 1 Comments: 0
$$\mathrm{Find}\:\mathrm{out}\:\mathrm{x},\mathrm{y}\:\mathrm{such}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{lcm}\left(\mathrm{x},\mathrm{y}\right)}{\mathrm{gcd}\left(\mathrm{x},\mathrm{y}\right)}=\mathrm{lcm}\left(\mathrm{x},\mathrm{y}\right)−\mathrm{gcd}\left(\mathrm{x},\mathrm{y}\right) \\ $$
Question Number 62213 Answers: 0 Comments: 1
$${calculate}\:\int\int\int_{{D}} \:{e}^{−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} } \sqrt{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:+{z}^{\mathrm{2}} }{dxdydz}\:{with} \\ $$$${D}\:=\left\{\left({x},{y},{z}\right)\in{R}^{\mathrm{3}} \:/\:\:\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\:,\:\mathrm{1}\leqslant{y}\leqslant\mathrm{2}\:\:{and}\:\:\:\mathrm{2}\leqslant{z}\leqslant\mathrm{3}\:\right\} \\ $$
Question Number 62211 Answers: 0 Comments: 3
$$\frac{{x}}{\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }+\mathrm{3}}{Max}=\frac{\mathrm{5}}{\mathrm{3}}? \\ $$
Question Number 62210 Answers: 0 Comments: 2
$${let}\:{f}\left({x}\right)\:=\left({x}+\mathrm{1}\right)^{{n}} \:{arctan}\left({nx}\right) \\ $$$${calculate}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right). \\ $$
Question Number 62209 Answers: 1 Comments: 1
$${find}\:{g}\left({a}\right)\:=\int\left({x}+{a}\right)\sqrt{{x}^{\mathrm{2}} −{a}^{\mathrm{2}} }{dx}\: \\ $$
Question Number 62208 Answers: 1 Comments: 2
$${find}\:{f}\left({a}\right)\:=\int\:\:\left({x}−{a}\right)\sqrt{{x}^{\mathrm{2}} \:+{a}^{\mathrm{2}} }{dx} \\ $$
Pg 1418 Pg 1419 Pg 1420 Pg 1421 Pg 1422 Pg 1423 Pg 1424 Pg 1425 Pg 1426 Pg 1427
Terms of Service
Privacy Policy
Contact: info@tinkutara.com