Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1423
Question Number 68636 Answers: 2 Comments: 0
$$\frac{−{a}^{\mathrm{2}} +{a}+\mathrm{1}}{\:\:\:\:{a}^{\mathrm{2}} +{a}+\mathrm{1}}=\frac{−{b}^{\mathrm{2}} +{b}+\mathrm{1}}{\:\:\:\:{b}^{\mathrm{2}} +{b}+\mathrm{1}} \\ $$$$\:\:=\:\frac{\:\:\:\:\mathrm{2}{a}^{\mathrm{2}} −\mathrm{2}{ab}+\left({b}−{a}\right)}{−\mathrm{2}{a}^{\mathrm{2}} +\mathrm{2}{ab}+\left({b}−{a}\right)} \\ $$$$\:\:=\frac{−\mathrm{2}{ab}+\left({a}+{b}\right)+\mathrm{2}}{\:\:\:\:\mathrm{2}{ab}+\left({a}+{b}\right)+\mathrm{2}} \\ $$$${Solve}\:{for}\:\boldsymbol{{a}}. \\ $$$$ \\ $$
Question Number 68629 Answers: 1 Comments: 0
Question Number 68626 Answers: 0 Comments: 0
$$\mathrm{l}{im}\:\:\frac{−{n}\left(\mathrm{2}−{a}\right)^{{n}} }{\left(\mathrm{2}−{a}\right)} \\ $$$${n}\rightarrow\infty \\ $$
Question Number 68624 Answers: 2 Comments: 0
Question Number 68618 Answers: 1 Comments: 0
$${solve}\:{for}\:{x}\:{the}\:{following}\:{equations} \\ $$$$\left.{a}\right)\:{log}\:{x}^{\mathrm{3}} \:−\:\mathrm{2}{log}\:{x}^{\mathrm{2}} \:+\:\mathrm{2}{log}\:{x}\:\:+\:\mathrm{2}{log}\:\sqrt{{x}}\:=\:\mathrm{3} \\ $$$$\left.{b}\right)\:{log}_{{x}} \mathrm{24}\:−\mathrm{3}{log}_{{x}} \mathrm{4}\:\:+\:\mathrm{2}{log}_{{x}} \mathrm{3}\:=−\mathrm{3} \\ $$
Question Number 68617 Answers: 0 Comments: 1
$${find}\:{the}\:{value}\:{of}\:{p}\:{given}\:{that} \\ $$$$\mathrm{3}^{{p}} \:×\:\mathrm{3}^{−\mathrm{1}} \:×\:\mathrm{5}\:×\:\mathrm{3}^{{p}−\mathrm{1}} \:=\:\mathrm{2}\:×\:\mathrm{3}^{\mathrm{4}} \\ $$
Question Number 68616 Answers: 2 Comments: 0
$${given}\:{that}\:{a},{b}\:{and}\:{c}\:{are}\:{positive}\:{numbers}\:{other}\:{than}\:\mathrm{1} \\ $$$$,\:{show}\:{that}\:\:{log}_{{b}} {a}\:×\:{log}_{{c}} {b}\:×\:{log}_{{a}} {c}\:=\:\mathrm{1} \\ $$$${hence},\:{evaluate}\:\:\:{log}_{\mathrm{10}} \mathrm{25}\:×\:{log}_{\mathrm{2}} \mathrm{10}\:×\:{log}_{\mathrm{5}} \mathrm{4} \\ $$
Question Number 68611 Answers: 1 Comments: 0
Question Number 68609 Answers: 1 Comments: 1
Question Number 68608 Answers: 0 Comments: 0
Question Number 68601 Answers: 0 Comments: 4
$${ABCD}\:\mathrm{is}\:\mathrm{a}\:\mathrm{side}\:\mathrm{square}\:\mathrm{1}.\: \\ $$$${B},\:{F}\:\mathrm{and}\:{E}\:\mathrm{are}\:\mathrm{collinear}. \\ $$$${FDE}\:\mathrm{is}\:\mathrm{a}\:\mathrm{right}\:\mathrm{triangle}\:\mathrm{with}\:\mathrm{hypotenuse}\:\mathrm{1} \\ $$$$\mathrm{and}\:\mathrm{the}\:{DE}\:\mathrm{cathetus}\:\mathrm{is}\:\mathrm{worth}\:\boldsymbol{{x}}.\: \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\boldsymbol{{x}}? \\ $$$$\left(\mathrm{Solve}\:\mathrm{with}\:\mathrm{algebra}\right) \\ $$
Question Number 68600 Answers: 0 Comments: 1
$$\left.\mathrm{1}\right){calculatef}\left({a}\right)=\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left({arctanx}\right)}{{a}+{x}^{\mathrm{2}} }{dx}\:{with}\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right)?{calculste}\:\:{g}\left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\frac{{cos}\left({arctanx}\right)}{\left({a}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{3}\right){find}\:{the}\:{value}\:{if}\:{integrals} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left({arctanx}\right)}{\mathrm{2}+{x}^{\mathrm{2}} }\:{and}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left({arctanx}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$
Question Number 68598 Answers: 0 Comments: 2
$$\:{find}\:\int\:\:\:\:\frac{{dx}}{{x}^{\mathrm{3}} −\mathrm{4}{x}\:+\mathrm{3}} \\ $$
Question Number 68597 Answers: 0 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{arctan}\left({e}^{{x}^{\mathrm{2}} } \right)}{{x}^{\mathrm{2}} \:+\mathrm{8}}{dx} \\ $$
Question Number 68596 Answers: 0 Comments: 1
$${calculate}\:\int_{\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{3}}} \:\:\:\:\frac{{xdx}}{\mathrm{3}+{cosx}} \\ $$
Question Number 68595 Answers: 0 Comments: 1
$${calculate}\:\:{A}_{\lambda} =\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{e}^{−\lambda{x}^{\mathrm{2}} } }{{x}^{\mathrm{4}} +\mathrm{1}}{dx}\:\:{with}\:\lambda>\mathrm{0}\:\:{and}\: \\ $$$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{A}_{\lambda} \:{d}\lambda \\ $$
Question Number 68594 Answers: 0 Comments: 0
$${calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\frac{{dx}}{{cosx}\:+{sin}\left(\mathrm{2}{x}\right)} \\ $$
Question Number 68593 Answers: 0 Comments: 1
$${calculate}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$
Question Number 68592 Answers: 0 Comments: 2
$${find}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)^{\mathrm{3}} } \\ $$
Question Number 68591 Answers: 0 Comments: 6
Question Number 68589 Answers: 1 Comments: 0
Question Number 68632 Answers: 0 Comments: 0
$$\left({sin}\frac{\pi}{\mathrm{9}}\:+\:{i}\:{sin}\frac{\mathrm{3}\pi}{\mathrm{18}}\right)^{−\mathrm{9}} \\ $$
Question Number 68554 Answers: 0 Comments: 4
Question Number 68549 Answers: 1 Comments: 3
$${y}=\frac{{x}^{\mathrm{3}} }{{x}^{\mathrm{2}} +\mathrm{1}} \\ $$$${y}^{−\mathrm{1}} =... \\ $$
Question Number 68546 Answers: 1 Comments: 0
$${find}\:{the}\:{range}\:{and}\:{domain}\:{of}\:{f}\left({x}\right) \\ $$$$ \\ $$$${f}\left({x}\right)=\sqrt{{sin}^{−\mathrm{1}} \left({ln}\frac{{x}}{\mathrm{10}}\right)} \\ $$
Question Number 68541 Answers: 1 Comments: 1
Pg 1418 Pg 1419 Pg 1420 Pg 1421 Pg 1422 Pg 1423 Pg 1424 Pg 1425 Pg 1426 Pg 1427
Terms of Service
Privacy Policy
Contact: info@tinkutara.com