Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1423

Question Number 62281    Answers: 1   Comments: 0

{ ((x^3 +y^3 =3xy)),((x^4 +y^4 =4xy)) :} [x,y≠0]

$$\begin{cases}{\boldsymbol{\mathrm{x}}^{\mathrm{3}} +\boldsymbol{\mathrm{y}}^{\mathrm{3}} =\mathrm{3}\boldsymbol{\mathrm{xy}}}\\{\boldsymbol{\mathrm{x}}^{\mathrm{4}} +\boldsymbol{\mathrm{y}}^{\mathrm{4}} =\mathrm{4}\boldsymbol{\mathrm{xy}}}\end{cases}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[\boldsymbol{\mathrm{x}},\boldsymbol{\mathrm{y}}\neq\mathrm{0}\right] \\ $$

Question Number 62276    Answers: 1   Comments: 0

{ ((((√x)/a)+((√y)/b)=1)),((((√a)/x)+((√b)/y)=1)) :} a,b∈R^+

$$\begin{cases}{\frac{\sqrt{\boldsymbol{\mathrm{x}}}}{\boldsymbol{\mathrm{a}}}+\frac{\sqrt{\boldsymbol{\mathrm{y}}}}{\boldsymbol{\mathrm{b}}}=\mathrm{1}}\\{\frac{\sqrt{\boldsymbol{\mathrm{a}}}}{\boldsymbol{\mathrm{x}}}+\frac{\sqrt{\boldsymbol{\mathrm{b}}}}{\boldsymbol{\mathrm{y}}}=\mathrm{1}}\end{cases}\:\:\:\boldsymbol{\mathrm{a}},\boldsymbol{\mathrm{b}}\in\mathrm{R}^{+} \\ $$

Question Number 62275    Answers: 1   Comments: 0

{ ((a(√x)+b(√y)=2(√(ab)))),((x(√a)+y(√b)=2(√(ab)))) :} a,b∈R^+

$$\begin{cases}{\boldsymbol{\mathrm{a}}\sqrt{\boldsymbol{\mathrm{x}}}+\boldsymbol{\mathrm{b}}\sqrt{\boldsymbol{\mathrm{y}}}=\mathrm{2}\sqrt{\boldsymbol{\mathrm{ab}}}}\\{\boldsymbol{\mathrm{x}}\sqrt{\boldsymbol{\mathrm{a}}}+\boldsymbol{\mathrm{y}}\sqrt{\boldsymbol{\mathrm{b}}}=\mathrm{2}\sqrt{\boldsymbol{\mathrm{ab}}}}\end{cases}\:\:\:\:\:\:\boldsymbol{\mathrm{a}},\boldsymbol{\mathrm{b}}\in\mathrm{R}^{+} \\ $$

Question Number 62274    Answers: 1   Comments: 4

∫_0 ^∞ e^(−x^2 ) dx

$$\underset{\mathrm{0}} {\overset{\infty} {\int}}{e}^{−{x}^{\mathrm{2}} } \:{dx} \\ $$

Question Number 62273    Answers: 0   Comments: 4

Mr. Rasheed.Sindhi I sense you′re much engaged in making olympiad contents these days , I wish that you join my workspace concerning that same.

$${Mr}.\:{Rasheed}.{Sindhi}\: \\ $$$${I}\:{sense}\:{you}'{re}\:{much}\:{engaged}\:{in}\:{making}\: \\ $$$${olympiad}\:{contents}\:{these}\:{days}\:,\:{I}\:{wish}\: \\ $$$${that}\:{you}\:{join}\:{my}\:{workspace}\:{concerning}\:{that}\:{same}. \\ $$

Question Number 62266    Answers: 1   Comments: 1

∫((2sin(x)+3cos(x))/(3sin(x)+4cos(x)))dx

$$\int\frac{\mathrm{2}{sin}\left({x}\right)+\mathrm{3}{cos}\left({x}\right)}{\mathrm{3}{sin}\left({x}\right)+\mathrm{4}{cos}\left({x}\right)}{dx} \\ $$

Question Number 62265    Answers: 1   Comments: 1

Question Number 62263    Answers: 1   Comments: 0

Question Number 62262    Answers: 1   Comments: 1

find the value of I =∫_0 ^∞ ((e^(−t) sint)/(√t))dt and J =∫_0 ^∞ ((e^(−t) cos(t))/(√t))dt ,study first the convergence.

$${find}\:{the}\:{value}\:{of}\: \\ $$$${I}\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{t}} {sint}}{\sqrt{{t}}}{dt}\:\:{and}\:{J}\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{t}} {cos}\left({t}\right)}{\sqrt{{t}}}{dt}\:\:,{study}\:{first}\:{the}\:{convergence}. \\ $$

Question Number 62252    Answers: 0   Comments: 1

∫ln(x+1)/(x^2 −x+1) limit ={ 0>2}

$$\int\mathrm{ln}\left(\mathrm{x}+\mathrm{1}\right)/\left(\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{1}\right) \\ $$$$\mathrm{limit}\:=\left\{\:\mathrm{0}>\mathrm{2}\right\} \\ $$

Question Number 62251    Answers: 0   Comments: 1

∫(x^2 −4)^(1/2) dx trig substitution only

$$\int\left(\mathrm{x}^{\mathrm{2}} −\mathrm{4}\right)^{\mathrm{1}/\mathrm{2}} \mathrm{dx} \\ $$$$\mathrm{trig}\:\mathrm{substitution}\:\mathrm{only} \\ $$

Question Number 62244    Answers: 1   Comments: 3

Find out x,y, such that gcd(x^3 ,y^2 )=gcd(x^2 ,y^3 )

$$\mathrm{Find}\:\mathrm{out}\:\mathrm{x},\mathrm{y},\:\mathrm{such}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\mathrm{gcd}\left(\mathrm{x}^{\mathrm{3}} ,\mathrm{y}^{\mathrm{2}} \right)=\mathrm{gcd}\left(\mathrm{x}^{\mathrm{2}} ,\mathrm{y}^{\mathrm{3}} \right) \\ $$

Question Number 62242    Answers: 2   Comments: 1

Find out x,y such that lcm(x,y)=180 ∧ gcd(x,y)=45

$$\mathrm{Find}\:\mathrm{out}\:\mathrm{x},\mathrm{y}\:\mathrm{such}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{lcm}\left(\mathrm{x},\mathrm{y}\right)=\mathrm{180}\:\wedge\:\mathrm{gcd}\left(\mathrm{x},\mathrm{y}\right)=\mathrm{45} \\ $$

Question Number 62234    Answers: 1   Comments: 0

Question Number 62232    Answers: 0   Comments: 4

Question Number 62228    Answers: 0   Comments: 2

{ (((√(a+x))+(√(a−y))=2a)),(((√(a−x))+(√(a+y))=2a)) :} a∈R.

$$\begin{cases}{\sqrt{\boldsymbol{\mathrm{a}}+\boldsymbol{\mathrm{x}}}+\sqrt{\boldsymbol{\mathrm{a}}−\boldsymbol{\mathrm{y}}}=\mathrm{2}\boldsymbol{\mathrm{a}}}\\{\sqrt{\boldsymbol{\mathrm{a}}−\boldsymbol{\mathrm{x}}}+\sqrt{\boldsymbol{\mathrm{a}}+\boldsymbol{\mathrm{y}}}=\mathrm{2}\boldsymbol{\mathrm{a}}}\end{cases}\:\:\:\:\:\boldsymbol{\mathrm{a}}\in\boldsymbol{\mathrm{R}}. \\ $$

Question Number 62227    Answers: 0   Comments: 3

1.∫(√(1+x+x^2 +x^3 ))dx=? 2.∫ ((√(1−tgx))/(sinx)) dx=? 3.∫ e^x .ln(1+(√(1+x^2 )))dx=? 4.∫ ((sinx)/(1+sinx+sin2x)) dx=?

$$\mathrm{1}.\int\sqrt{\mathrm{1}+\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\boldsymbol{\mathrm{x}}^{\mathrm{3}} \:\:}\boldsymbol{\mathrm{dx}}=? \\ $$$$\mathrm{2}.\int\:\:\:\frac{\sqrt{\mathrm{1}−\boldsymbol{\mathrm{tgx}}}}{\boldsymbol{\mathrm{sinx}}}\:\:\boldsymbol{\mathrm{dx}}=? \\ $$$$\mathrm{3}.\int\:\:\:\boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{x}}} .\boldsymbol{\mathrm{ln}}\left(\mathrm{1}+\sqrt{\mathrm{1}+\boldsymbol{\mathrm{x}}^{\mathrm{2}} }\right)\boldsymbol{\mathrm{dx}}=? \\ $$$$\mathrm{4}.\int\:\:\frac{\boldsymbol{\mathrm{sinx}}}{\mathrm{1}+\boldsymbol{\mathrm{sinx}}+\boldsymbol{\mathrm{sin}}\mathrm{2}\boldsymbol{\mathrm{x}}}\:\boldsymbol{\mathrm{dx}}=? \\ $$

Question Number 62225    Answers: 0   Comments: 4

let j =e^((i2π)/3) and P(x) =(1+jx)^n −(1−jx)^n 1) find P(x) at form of arctan 2) find the roots of P(x) 3)factorize inside C[x] the polynome P(x) 4) calculate ∫_0 ^1 P(x)dx

$${let}\:{j}\:={e}^{\frac{{i}\mathrm{2}\pi}{\mathrm{3}}} \:\:\:{and}\:{P}\left({x}\right)\:=\left(\mathrm{1}+{jx}\right)^{{n}} −\left(\mathrm{1}−{jx}\right)^{{n}} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{P}\left({x}\right)\:{at}\:{form}\:{of}\:{arctan} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{roots}\:{of}\:{P}\left({x}\right) \\ $$$$\left.\mathrm{3}\right){factorize}\:{inside}\:{C}\left[{x}\right]\:\:{the}\:{polynome}\:{P}\left({x}\right) \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{P}\left({x}\right){dx} \\ $$

Question Number 62241    Answers: 1   Comments: 0

if the point A B C with position vector (20i^ +λj^ ) (5i^ −j^ ) and(10i^ −13j^ ) are collinear then the value of λ is:

$$\boldsymbol{{if}}\:\boldsymbol{{the}}\:\boldsymbol{{point}}\:{A}\:{B}\:{C}\:{with}\:{position}\:{vector}\: \\ $$$$\left(\mathrm{20}\hat {{i}}+\lambda\hat {{j}}\right)\:\left(\mathrm{5}\hat {{i}}−\hat {{j}}\right)\:{and}\left(\mathrm{10}\hat {{i}}−\mathrm{13}\hat {{j}}\right)\:{are} \\ $$$${collinear}\:{then}\:{the}\:{value}\:{of}\:\lambda\:{is}: \\ $$

Question Number 62220    Answers: 0   Comments: 2

let f(x) =∫_0 ^∞ (t^2 /(x^6 +t^6 )) dt with x>0 1) calculate f(x) 2) calculate g(x) =∫_0 ^∞ (t^2 /((x^6 +t^6 )^2 ))dt 3) find values of integrals ∫_0 ^∞ (t^2 /(t^6 +8))dt and ∫_0 ^∞ (t^2 /((t^6 +8)^2 ))dt .

$${let}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\:\frac{{t}^{\mathrm{2}} }{{x}^{\mathrm{6}} \:\:+{t}^{\mathrm{6}} }\:{dt}\:\:\:\:\:\:{with}\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{g}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{t}^{\mathrm{2}} }{\left({x}^{\mathrm{6}} \:+{t}^{\mathrm{6}} \right)^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{values}\:{of}\:{integrals}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{t}^{\mathrm{2}} }{{t}^{\mathrm{6}} \:+\mathrm{8}}{dt}\:\:\:\:{and}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{t}^{\mathrm{2}} }{\left({t}^{\mathrm{6}} +\mathrm{8}\right)^{\mathrm{2}} }{dt}\:. \\ $$

Question Number 62214    Answers: 1   Comments: 0

Find out x,y such that ((lcm(x,y))/(gcd(x,y)))=lcm(x,y)−gcd(x,y)

$$\mathrm{Find}\:\mathrm{out}\:\mathrm{x},\mathrm{y}\:\mathrm{such}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{lcm}\left(\mathrm{x},\mathrm{y}\right)}{\mathrm{gcd}\left(\mathrm{x},\mathrm{y}\right)}=\mathrm{lcm}\left(\mathrm{x},\mathrm{y}\right)−\mathrm{gcd}\left(\mathrm{x},\mathrm{y}\right) \\ $$

Question Number 62213    Answers: 0   Comments: 1

calculate ∫∫∫_D e^(−x^2 −y^2 ) (√(x^2 +y^2 +z^2 ))dxdydz with D ={(x,y,z)∈R^3 / 0≤x≤1 , 1≤y≤2 and 2≤z≤3 }

$${calculate}\:\int\int\int_{{D}} \:{e}^{−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} } \sqrt{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:+{z}^{\mathrm{2}} }{dxdydz}\:{with} \\ $$$${D}\:=\left\{\left({x},{y},{z}\right)\in{R}^{\mathrm{3}} \:/\:\:\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\:,\:\mathrm{1}\leqslant{y}\leqslant\mathrm{2}\:\:{and}\:\:\:\mathrm{2}\leqslant{z}\leqslant\mathrm{3}\:\right\} \\ $$

Question Number 62211    Answers: 0   Comments: 3

(x/((√(4−x^2 ))+3))Max=(5/3)?

$$\frac{{x}}{\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }+\mathrm{3}}{Max}=\frac{\mathrm{5}}{\mathrm{3}}? \\ $$

Question Number 62210    Answers: 0   Comments: 2

let f(x) =(x+1)^n arctan(nx) calculate f^((n)) (0).

$${let}\:{f}\left({x}\right)\:=\left({x}+\mathrm{1}\right)^{{n}} \:{arctan}\left({nx}\right) \\ $$$${calculate}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right). \\ $$

Question Number 62209    Answers: 1   Comments: 1

find g(a) =∫(x+a)(√(x^2 −a^2 ))dx

$${find}\:{g}\left({a}\right)\:=\int\left({x}+{a}\right)\sqrt{{x}^{\mathrm{2}} −{a}^{\mathrm{2}} }{dx}\: \\ $$

Question Number 62208    Answers: 1   Comments: 2

find f(a) =∫ (x−a)(√(x^2 +a^2 ))dx

$${find}\:{f}\left({a}\right)\:=\int\:\:\left({x}−{a}\right)\sqrt{{x}^{\mathrm{2}} \:+{a}^{\mathrm{2}} }{dx} \\ $$

  Pg 1418      Pg 1419      Pg 1420      Pg 1421      Pg 1422      Pg 1423      Pg 1424      Pg 1425      Pg 1426      Pg 1427   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com