Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1423

Question Number 68289    Answers: 1   Comments: 0

A circle is divided into two equal parts By An arc with center on the circle. Determine (a) The length of the arc (b)The ratio in which the arc divides the diameter meeting the center of the arc.

$$\mathrm{A}\:\mathrm{circle}\:\mathrm{is}\:\mathrm{divided}\:\mathrm{into}\:\mathrm{two}\:\mathrm{equal}\:\mathrm{parts} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{By} \\ $$$$\:\mathrm{An}\:\mathrm{arc}\:\mathrm{with}\:\mathrm{center}\:\mathrm{on}\:\mathrm{the}\:\mathrm{circle}. \\ $$$$\mathcal{D}{etermine} \\ $$$$\:\:\left({a}\right)\:{The}\:{length}\:{of}\:{the}\:{arc} \\ $$$$\:\:\left({b}\right){The}\:{ratio}\:{in}\:{which}\:{the}\:{arc} \\ $$$$\:\:\:\:\:\:\:\:{divides}\:{the}\:{diameter}\: \\ $$$$\:\:\:\:\:\:\:\:{meeting}\:{the}\:{center}\:{of}\:{the}\:{arc}. \\ $$

Question Number 68272    Answers: 1   Comments: 0

Question Number 68271    Answers: 0   Comments: 0

Find J=∫_0 ^1 ((W(−ulnu))/(ulnu)) du when W is the lambert function

$$\:\:{Find}\:\:{J}=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{W}\left(−{ulnu}\right)}{{ulnu}}\:{du}\:\:\:\:{when}\:\:{W}\:{is}\:{the}\:{lambert}\:{function} \\ $$

Question Number 68270    Answers: 1   Comments: 3

Prove that if Li_2 (x)=Σ_(n=1) (x^n /n^2 ) then ∀ x Li_2 (x)+Li_2 (1−x) = (π^2 /6) −ln(x)ln(1−x) ∀ x∉[0:1] Li_2 (x)+Li_2 ((1/x)) = −(π^2 /6) −[ln(−x)]^2 Find A=Σ_(n=1) ^∞ (ϕ^n /n^2 ) and B=Σ_(n=1) ^∞ (2^n /n^2 )

$$\:{Prove}\:{that}\:\:{if}\:\:{Li}_{\mathrm{2}} \left({x}\right)=\underset{{n}=\mathrm{1}} {\sum}\:\frac{{x}^{{n}} }{{n}^{\mathrm{2}} }\:\:\:{then} \\ $$$$\forall\:{x}\:\:{Li}_{\mathrm{2}} \left({x}\right)+{Li}_{\mathrm{2}} \left(\mathrm{1}−{x}\right)\:=\:\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:−{ln}\left({x}\right){ln}\left(\mathrm{1}−{x}\right)\:\: \\ $$$$\forall\:{x}\notin\left[\mathrm{0}:\mathrm{1}\right]\:{Li}_{\mathrm{2}} \left({x}\right)+{Li}_{\mathrm{2}} \left(\frac{\mathrm{1}}{{x}}\right)\:=\:−\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:−\left[{ln}\left(−{x}\right)\right]^{\mathrm{2}} \:\: \\ $$$${Find}\:\:{A}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\varphi^{{n}} }{{n}^{\mathrm{2}} }\:\:{and}\:\:{B}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{2}^{{n}} }{{n}^{\mathrm{2}} }\:\: \\ $$

Question Number 68260    Answers: 0   Comments: 1

find f(x) if f((1/x))+f(1−x)=x

$${find}\:{f}\left({x}\right)\:{if}\: \\ $$$${f}\left(\frac{\mathrm{1}}{{x}}\right)+{f}\left(\mathrm{1}−{x}\right)={x} \\ $$

Question Number 68278    Answers: 0   Comments: 2

Question Number 68257    Answers: 0   Comments: 0

Prove that (6/(673)) Σ_(n=1) ^∞ (1/(n^2 (((2n)),(n) ))) = (π^2 /(2019))

$$\:\:{Prove}\:{that}\:\:\frac{\mathrm{6}}{\mathrm{673}}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} \begin{pmatrix}{\mathrm{2}{n}}\\{{n}}\end{pmatrix}}\:=\:\frac{\pi^{\mathrm{2}} }{\mathrm{2019}}\: \\ $$

Question Number 68244    Answers: 0   Comments: 1

find nature of the serie Σ_(n=1) ^∞ arctan(n+(1/n))

$${find}\:{nature}\:{of}\:{the}\:{serie}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:{arctan}\left({n}+\frac{\mathrm{1}}{{n}}\right) \\ $$

Question Number 68243    Answers: 0   Comments: 3

let f(x) =arctan(ax +1) with a real 1) calculate f^((n)) (x) and f^((n)) (0) 2) developp f at integr serie 3) calculate ∫_(−∞) ^(+∞) ((f(x))/(x^2 +4))dx

$${let}\:{f}\left({x}\right)\:={arctan}\left({ax}\:+\mathrm{1}\right)\:\:{with}\:{a}\:{real} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{\left({n}\right)} \left({x}\right)\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\int_{−\infty} ^{+\infty} \:\frac{{f}\left({x}\right)}{{x}^{\mathrm{2}} \:+\mathrm{4}}{dx} \\ $$

Question Number 68242    Answers: 0   Comments: 0

find lim_(x→0) ((cos(πx^x )+1)/x^2 )

$${find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\frac{{cos}\left(\pi{x}^{{x}} \right)+\mathrm{1}}{{x}^{\mathrm{2}} } \\ $$

Question Number 68241    Answers: 0   Comments: 1

calculate ∫∫_w (x^2 −2y^2 )(√(x^2 +3y^2 ))dxdy with w ={(x,y)∈R^2 / 0≤x≤1 and 1≤y≤2}

$${calculate}\:\int\int_{{w}} \:\:\:\left({x}^{\mathrm{2}} −\mathrm{2}{y}^{\mathrm{2}} \right)\sqrt{{x}^{\mathrm{2}} +\mathrm{3}{y}^{\mathrm{2}} }{dxdy} \\ $$$${with}\:{w}\:=\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} /\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\:\:{and}\:\mathrm{1}\leqslant{y}\leqslant\mathrm{2}\right\} \\ $$

Question Number 68240    Answers: 0   Comments: 1

calculate ∫_0 ^∞ ((arctan(3x)−arctan(2x))/x)dx

$${calculate}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left(\mathrm{3}{x}\right)−{arctan}\left(\mathrm{2}{x}\right)}{{x}}{dx} \\ $$

Question Number 68239    Answers: 0   Comments: 2

let f(x) =e^(−2x) ln(1+x^2 ) developp f at integr serie.

$${let}\:{f}\left({x}\right)\:={e}^{−\mathrm{2}{x}} {ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right) \\ $$$${developp}\:{f}\:{at}\:{integr}\:{serie}. \\ $$

Question Number 68238    Answers: 0   Comments: 2

let f(x)=(x^2 −3x)arctan(2x+1) 1) determine f^((n)) (x) and f^((n)) (0) 2)developp f at integr serie 3) calculate ∫_0 ^1 f(x)dx

$${let}\:\:{f}\left({x}\right)=\left({x}^{\mathrm{2}} −\mathrm{3}{x}\right){arctan}\left(\mathrm{2}{x}+\mathrm{1}\right) \\ $$$$\left.\mathrm{1}\right)\:{determine}\:{f}^{\left({n}\right)} \left({x}\right)\:\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right){developp}\:{f}\:{at}\:{integr}\:{serie} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({x}\right){dx} \\ $$

Question Number 68237    Answers: 0   Comments: 1

1. find the equation of the line making an angle of 135^(° ) with O_(x ) and passing through thepoints?(−2,5) 2. find the slope of the line through the points (5,3)and (7,2). find (i) the perpendicular form (ii) find the intercept form of its equation. 3. Determine the gradient of the straight line graph passing through the co-ordinates: (i) (2,7) and (−3,4) (ii) (((1 )/4), ((-3)/4)) and (((-1)/2), (5/8)).

$$\mathrm{1}.\:{find}\:{the}\:{equation}\:{of}\:{the}\:{line}\:{making}\:{an}\:{angle}\:{of}\:\mathrm{135}^{°\:} {with}\:{O}_{{x}\:} \:{and}\:{passing}\:{through}\:{thepoints}?\left(−\mathrm{2},\mathrm{5}\right) \\ $$$$\mathrm{2}.\:{find}\:{the}\:{slope}\:{of}\:{the}\:{line}\:{through}\:{the}\:{points}\:\left(\mathrm{5},\mathrm{3}\right){and}\:\left(\mathrm{7},\mathrm{2}\right).\:{find}\:\left({i}\right)\:{the}\:{perpendicular}\:{form}\:\left({ii}\right)\:{find}\:{the}\:{intercept}\:{form}\:{of}\:{its}\:{equation}. \\ $$$$\mathrm{3}.\:{Determine}\:{the}\:{gradient}\:{of}\:{the}\:{straight}\:{line}\:{graph}\:{passing}\:{through}\:{the}\:{co}-{ordinates}: \\ $$$$\left({i}\right)\:\left(\mathrm{2},\mathrm{7}\right)\:{and}\:\left(−\mathrm{3},\mathrm{4}\right) \\ $$$$\left({ii}\right)\:\left(\frac{\mathrm{1}\:}{\mathrm{4}},\:\frac{-\mathrm{3}}{\mathrm{4}}\right)\:{and}\:\left(\frac{-\mathrm{1}}{\mathrm{2}},\:\frac{\mathrm{5}}{\mathrm{8}}\right). \\ $$

Question Number 68236    Answers: 0   Comments: 0

Question Number 68235    Answers: 0   Comments: 0

Question Number 68234    Answers: 1   Comments: 5

Question Number 68232    Answers: 0   Comments: 0

Question Number 68222    Answers: 1   Comments: 5

Sketch the shear and moment diagrams of a simply supported beam of 6m.The load on the beam consists of UDL of 15KN/m over the left half of the span.

$${Sketch}\:{the}\:{shear}\:{and}\:{moment}\:{diagrams} \\ $$$${of}\:{a}\:{simply}\:{supported}\:{beam}\:{of}\:\mathrm{6}{m}.{The} \\ $$$${load}\:{on}\:{the}\:{beam}\:{consists}\:{of}\:{UDL}\:{of} \\ $$$$\mathrm{15}{KN}/{m}\:{over}\:{the}\:{left}\:{half}\:{of}\:{the}\:{span}. \\ $$$$ \\ $$

Question Number 68220    Answers: 0   Comments: 0

Let consider (a_n )_n and (u_n )_n two reals sequence defined such as a_0 =1 , ∀ n>1 a_(n+1) =Σ_(p=0) ^n a_p a_(n−p) and Σ_(p=0) ^n a_p u_(n−p) =0 Part1 1)Express ∀ n >1 a_n in terms of n 2) Find the largest domain of convergence of the integer serie {a_n x^n } 3)Determinate ∀ x∈D the sum f(x) of {a_n x^n } 4)Find the radius of convergence of the serie {u_n x^n } 5) Give the relation that between the sum S(x) of the second serie and (x/(f(x))) 6) Can you developp in integer serie g(x)=((πx)/(tan(πx))) Part2 Now do the part 1 but in the order 2)−1)−3)−4)−5)−6)

$$\:\:\:{Let}\:{consider}\:\left({a}_{{n}} \right)_{{n}} \:{and}\:\left({u}_{{n}} \right)_{{n}} \:{two}\:{reals}\:\:{sequence}\:\: \\ $$$${defined}\:{such}\:{as}\:\:\:{a}_{\mathrm{0}} =\mathrm{1}\:,\:\forall\:{n}>\mathrm{1}\:\:{a}_{{n}+\mathrm{1}} =\underset{{p}=\mathrm{0}} {\overset{{n}} {\sum}}{a}_{{p}} {a}_{{n}−{p}} \:\:\:{and}\:\:\underset{{p}=\mathrm{0}} {\overset{{n}} {\sum}}{a}_{{p}} {u}_{{n}−{p}} =\mathrm{0} \\ $$$${Part}\mathrm{1} \\ $$$$\left.\mathrm{1}\right){Express}\:\:\forall\:{n}\:>\mathrm{1}\:\:\:{a}_{{n}} \:{in}\:{terms}\:{of}\:{n} \\ $$$$\left.\mathrm{2}\right)\:{Find}\:{the}\:{largest}\:{domain}\:{of}\:{convergence}\:{of}\:{the}\:{integer}\:{serie}\:\left\{{a}_{{n}} {x}^{{n}} \right\} \\ $$$$\left.\mathrm{3}\right){Determinate}\:\forall\:{x}\in{D}\:{the}\:{sum}\:{f}\left({x}\right)\:{of}\:\left\{{a}_{{n}} {x}^{{n}} \right\} \\ $$$$\left.\mathrm{4}\right){Find}\:{the}\:{radius}\:{of}\:{convergence}\:{of}\:{the}\:{serie}\:\left\{{u}_{{n}} {x}^{{n}} \right\}\: \\ $$$$\left.\mathrm{5}\right)\:{Give}\:{the}\:{relation}\:{that}\:{between}\:{the}\:{sum}\:{S}\left({x}\right)\:{of}\:{the}\:{second}\:{serie}\:{and}\:\frac{{x}}{{f}\left({x}\right)}\: \\ $$$$\left.\mathrm{6}\right)\:{Can}\:{you}\:{developp}\:{in}\:{integer}\:{serie}\:\:{g}\left({x}\right)=\frac{\pi{x}}{{tan}\left(\pi{x}\right)} \\ $$$${Part}\mathrm{2} \\ $$$$\left.{N}\left.{o}\left.{w}\left.\:\left.{d}\left.{o}\:\:{the}\:{part}\:\mathrm{1}\:\:\:{but}\:{in}\:{the}\:{order}\:\:\mathrm{2}\right)−\mathrm{1}\right)−\mathrm{3}\right)−\mathrm{4}\right)−\mathrm{5}\right)−\mathrm{6}\right) \\ $$

Question Number 68219    Answers: 1   Comments: 0

Let consider (a_n )_n and (u_n )_n two reals sequence defined such as a_0 =1 , ∀ n>1 a_(n+1) =Σ_(p=0) ^n a_p a_(n−p) and Σ_(p=0) ^n a_p u_(n−p) =0 Part1 1)Express ∀ n >1 a_n in terms of n 2) Find the largest domain of convergence of the integer serie {a_n x^n } 3)Determinate ∀ x∈D the sum f(x) of {a_n x^n } 4)Find the radius of convergence of the serie {u_n x^n } 5) Give the relation that between the sum S(x) of the second serie and (x/(f(x))) 6) Can you developp in integer serie g(x)=((πx)/(tan(πx))) Part2 Now do the part 1 but in the order 2)−1)−3)−4)−5)−6)

$$\:\:\:{Let}\:{consider}\:\left({a}_{{n}} \right)_{{n}} \:{and}\:\left({u}_{{n}} \right)_{{n}} \:{two}\:{reals}\:\:{sequence}\:\: \\ $$$${defined}\:{such}\:{as}\:\:\:{a}_{\mathrm{0}} =\mathrm{1}\:,\:\forall\:{n}>\mathrm{1}\:\:{a}_{{n}+\mathrm{1}} =\underset{{p}=\mathrm{0}} {\overset{{n}} {\sum}}{a}_{{p}} {a}_{{n}−{p}} \:\:\:{and}\:\:\underset{{p}=\mathrm{0}} {\overset{{n}} {\sum}}{a}_{{p}} {u}_{{n}−{p}} =\mathrm{0} \\ $$$${Part}\mathrm{1} \\ $$$$\left.\mathrm{1}\right){Express}\:\:\forall\:{n}\:>\mathrm{1}\:\:\:{a}_{{n}} \:{in}\:{terms}\:{of}\:{n} \\ $$$$\left.\mathrm{2}\right)\:{Find}\:{the}\:{largest}\:{domain}\:{of}\:{convergence}\:{of}\:{the}\:{integer}\:{serie}\:\left\{{a}_{{n}} {x}^{{n}} \right\} \\ $$$$\left.\mathrm{3}\right){Determinate}\:\forall\:{x}\in{D}\:{the}\:{sum}\:{f}\left({x}\right)\:{of}\:\left\{{a}_{{n}} {x}^{{n}} \right\} \\ $$$$\left.\mathrm{4}\right){Find}\:{the}\:{radius}\:{of}\:{convergence}\:{of}\:{the}\:{serie}\:\left\{{u}_{{n}} {x}^{{n}} \right\}\: \\ $$$$\left.\mathrm{5}\right)\:{Give}\:{the}\:{relation}\:{that}\:{between}\:{the}\:{sum}\:{S}\left({x}\right)\:{of}\:{the}\:{second}\:{serie}\:{and}\:\frac{{x}}{{f}\left({x}\right)}\: \\ $$$$\left.\mathrm{6}\right)\:{Can}\:{you}\:{developp}\:{in}\:{integer}\:{serie}\:\:{g}\left({x}\right)=\frac{\pi{x}}{{tan}\left(\pi{x}\right)} \\ $$$${Part}\mathrm{2} \\ $$$$\left.{N}\left.{o}\left.{w}\left.\:\left.{d}\left.{o}\:\:{the}\:{part}\:\mathrm{1}\:\:\:{but}\:{in}\:{the}\:{order}\:\:\mathrm{2}\right)−\mathrm{1}\right)−\mathrm{3}\right)−\mathrm{4}\right)−\mathrm{5}\right)−\mathrm{6}\right) \\ $$

Question Number 68212    Answers: 3   Comments: 0

Question Number 68210    Answers: 2   Comments: 0

Question Number 68209    Answers: 0   Comments: 0

Question Number 68207    Answers: 1   Comments: 1

solve for x∈C sin x=z (z=a+bi=re^(iθ) )

$${solve}\:{for}\:{x}\in\mathbb{C} \\ $$$$\mathrm{sin}\:{x}={z}\:\:\:\left({z}={a}+{bi}={re}^{{i}\theta} \right) \\ $$

  Pg 1418      Pg 1419      Pg 1420      Pg 1421      Pg 1422      Pg 1423      Pg 1424      Pg 1425      Pg 1426      Pg 1427   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com