Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1421

Question Number 68481    Answers: 0   Comments: 6

I=∫_0 ^( 1) (√((c−x^2 )/(x(1−x^2 ))))dx (c >1)

$${I}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \sqrt{\frac{{c}−{x}^{\mathrm{2}} }{{x}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)}}{dx}\:\:\:\:\:\:\left({c}\:>\mathrm{1}\right) \\ $$

Question Number 68576    Answers: 1   Comments: 1

Question Number 68470    Answers: 0   Comments: 3

find the value of ∫_0 ^∞ ((arctan(2x^2 ))/(x^2 +4))dx

$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left(\mathrm{2}{x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} \:+\mathrm{4}}{dx} \\ $$

Question Number 68466    Answers: 1   Comments: 2

let f(x) =∫_x^ ^(x^2 −x) arctan(e^(−x−t) )dt calculate f^′ (x) and f^′ (0).

$${let}\:{f}\left({x}\right)\:=\int_{{x}^{} } ^{{x}^{\mathrm{2}} −{x}} \:{arctan}\left({e}^{−{x}−{t}} \right){dt} \\ $$$${calculate}\:{f}^{'} \left({x}\right)\:\:\:{and}\:{f}^{'} \left(\mathrm{0}\right). \\ $$

Question Number 68473    Answers: 0   Comments: 1

((sin 72°)/(sin 42°)) = p tan 12° = ?

$$\frac{\mathrm{sin}\:\mathrm{72}°}{\mathrm{sin}\:\mathrm{42}°}\:\:=\:\:{p} \\ $$$$\mathrm{tan}\:\mathrm{12}°\:\:=\:\:? \\ $$

Question Number 68451    Answers: 1   Comments: 7

Question Number 68446    Answers: 0   Comments: 1

cos (x−60)+cos (x−30)=sin x prove

$$\mathrm{cos}\:\left({x}−\mathrm{60}\right)+\mathrm{cos}\:\left({x}−\mathrm{30}\right)=\mathrm{sin}\:{x} \\ $$$${prove} \\ $$

Question Number 68434    Answers: 1   Comments: 0

Question Number 68433    Answers: 0   Comments: 0

hello i search som lectur about hypergeometric fonction2F_1 (a,b,c,x)=((Γ(c))/(Γ(a)Γ(b)))Σ_(n≥0) ((Γ(a+n)Γ(b+n))/(Γ(c+n)n!))x^n

$${hello} \\ $$$${i}\:{search}\:{som}\:{lectur}\:{about}\:{hypergeometric}\:{fonction}\mathrm{2}{F}_{\mathrm{1}} \left({a},{b},{c},{x}\right)=\frac{\Gamma\left({c}\right)}{\Gamma\left({a}\right)\Gamma\left({b}\right)}\sum_{{n}\geqslant\mathrm{0}} \frac{\Gamma\left({a}+{n}\right)\Gamma\left({b}+{n}\right)}{\Gamma\left({c}+{n}\right){n}!}{x}^{{n}} \\ $$$$ \\ $$

Question Number 68487    Answers: 1   Comments: 2

Question Number 68425    Answers: 1   Comments: 2

Question Number 68422    Answers: 1   Comments: 0

Question Number 68418    Answers: 1   Comments: 3

Question Number 68414    Answers: 2   Comments: 1

Is it possible to find any value for a,b,c from below system of equetions? { ((sina+sinb=sinc)),((cosa+cosb=cosc)) :}

$$\mathrm{Is}\:\mathrm{it}\:\mathrm{possible}\:\mathrm{to}\:\mathrm{find}\:\mathrm{any}\:\mathrm{value}\:\mathrm{for} \\ $$$$\boldsymbol{\mathrm{a}},\boldsymbol{\mathrm{b}},\boldsymbol{\mathrm{c}}\:\mathrm{from}\:\mathrm{below}\:\mathrm{system}\:\mathrm{of}\:\mathrm{equetions}? \\ $$$$\begin{cases}{\boldsymbol{\mathrm{sina}}+\boldsymbol{\mathrm{sinb}}=\boldsymbol{\mathrm{sinc}}}\\{\boldsymbol{\mathrm{cosa}}+\boldsymbol{\mathrm{cosb}}=\boldsymbol{\mathrm{cosc}}}\end{cases} \\ $$

Question Number 68409    Answers: 1   Comments: 3

calculate ∫_0 ^(+∞) ((arctan(x^2 ))/(1+x^2 ))dx

$${calculate}\:\int_{\mathrm{0}} ^{+\infty} \:\:\frac{{arctan}\left({x}^{\mathrm{2}} \right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$

Question Number 68405    Answers: 1   Comments: 3

There are a few problem reported. Notification: google discontinued Google Cloud Messaging so notifications are not working. Other Problems: There has been several new phone models and android version updates. And newer android version or phone models might have other issues. We are working on app updates for supporting these and also migrating to new messaging platform. We will address these problems as soon as we can.

$$\mathrm{There}\:\mathrm{are}\:\mathrm{a}\:\mathrm{few}\:\mathrm{problem}\:\mathrm{reported}. \\ $$$$\mathrm{Notification}:\:\mathrm{google}\:\mathrm{discontinued} \\ $$$$\mathrm{Google}\:\mathrm{Cloud}\:\mathrm{Messaging}\:\mathrm{so}\:\mathrm{notifications} \\ $$$$\mathrm{are}\:\mathrm{not}\:\mathrm{working}.\: \\ $$$$\mathrm{Other}\:\mathrm{Problems}: \\ $$$$\mathrm{There}\:\mathrm{has}\:\mathrm{been}\:\mathrm{several}\:\mathrm{new}\:\mathrm{phone} \\ $$$$\mathrm{models}\:\mathrm{and}\:\mathrm{android}\:\mathrm{version}\:\mathrm{updates}. \\ $$$$\mathrm{And}\:\mathrm{newer}\:\mathrm{android}\:\mathrm{version}\:\mathrm{or}\:\mathrm{phone} \\ $$$$\mathrm{models}\:\mathrm{might}\:\mathrm{have}\:\mathrm{other}\:\mathrm{issues}. \\ $$$$ \\ $$$$\mathrm{We}\:\mathrm{are}\:\mathrm{working}\:\mathrm{on}\:\mathrm{app}\:\mathrm{updates}\:\mathrm{for} \\ $$$$\mathrm{supporting}\:\mathrm{these}\:\mathrm{and}\:\mathrm{also}\:\mathrm{migrating} \\ $$$$\mathrm{to}\:\mathrm{new}\:\mathrm{messaging}\:\mathrm{platform}. \\ $$$$ \\ $$$$\mathrm{We}\:\mathrm{will}\:\mathrm{address}\:\mathrm{these}\:\mathrm{problems}\:\mathrm{as}\: \\ $$$$\mathrm{soon}\:\mathrm{as}\:\mathrm{we}\:\mathrm{can}. \\ $$

Question Number 68397    Answers: 2   Comments: 0

Question Number 68390    Answers: 1   Comments: 0

Question Number 68370    Answers: 1   Comments: 0

Question Number 68368    Answers: 1   Comments: 1

(1/(x+1)) = y lim_(x+1 → ∞) x tan ((1/(2x+2)))

$$\frac{\mathrm{1}}{{x}+\mathrm{1}}\:=\:{y} \\ $$$$\underset{{x}+\mathrm{1}\:\rightarrow\:\infty} {\mathrm{lim}}\:\:{x}\:\mathrm{tan}\:\left(\frac{\mathrm{1}}{\mathrm{2}{x}+\mathrm{2}}\right) \\ $$

Question Number 68354    Answers: 0   Comments: 6

lim_(x,y→(0,0)) ((x^4 − x^2 y^2 + y^4 )/(x^2 + x^4 y^4 + y^2 ))

$$\underset{{x},\mathrm{y}\rightarrow\left(\mathrm{0},\mathrm{0}\right)} {\mathrm{lim}}\:\frac{\mathrm{x}^{\mathrm{4}} \:−\:\mathrm{x}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{4}} }{\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{x}^{\mathrm{4}} \mathrm{y}^{\mathrm{4}} \:+\:\mathrm{y}^{\mathrm{2}} } \\ $$

Question Number 68353    Answers: 1   Comments: 0

If sin x+sin^2 x=1, then value of cos^2 x+cos^4 x is

$$\mathrm{If}\:\mathrm{sin}\:{x}+\mathrm{sin}^{\mathrm{2}} {x}=\mathrm{1},\:\mathrm{then}\:\mathrm{value}\:\mathrm{of} \\ $$$$\mathrm{cos}^{\mathrm{2}} {x}+\mathrm{cos}^{\mathrm{4}} {x}\:\:\mathrm{is} \\ $$

Question Number 68352    Answers: 1   Comments: 0

The value of ((1−tan^2 15°)/(1+tan^2 15°)) is

$$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\:\frac{\mathrm{1}−\mathrm{tan}^{\mathrm{2}} \mathrm{15}°}{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \mathrm{15}°}\:\:\mathrm{is} \\ $$

Question Number 68351    Answers: 2   Comments: 0

If 2x^2 +(2p−13)x+2=0 is exactly divisible by x−3, then the value of p is

$$\mathrm{If}\:\mathrm{2}{x}^{\mathrm{2}} +\left(\mathrm{2}{p}−\mathrm{13}\right){x}+\mathrm{2}=\mathrm{0}\:\mathrm{is}\:\mathrm{exactly}\:\mathrm{divisible} \\ $$$$\mathrm{by}\:{x}−\mathrm{3},\:\mathrm{then}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{p}\:\mathrm{is} \\ $$

Question Number 68350    Answers: 1   Comments: 2

Question Number 68349    Answers: 1   Comments: 0

  Pg 1416      Pg 1417      Pg 1418      Pg 1419      Pg 1420      Pg 1421      Pg 1422      Pg 1423      Pg 1424      Pg 1425   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com