Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1421

Question Number 68596    Answers: 0   Comments: 1

calculate ∫_(π/2) ^(π/3) ((xdx)/(3+cosx))

$${calculate}\:\int_{\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{3}}} \:\:\:\:\frac{{xdx}}{\mathrm{3}+{cosx}} \\ $$

Question Number 68595    Answers: 0   Comments: 1

calculate A_λ =∫_0 ^∞ (e^(−λx^2 ) /(x^4 +1))dx with λ>0 and find ∫_0 ^1 A_λ dλ

$${calculate}\:\:{A}_{\lambda} =\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{e}^{−\lambda{x}^{\mathrm{2}} } }{{x}^{\mathrm{4}} +\mathrm{1}}{dx}\:\:{with}\:\lambda>\mathrm{0}\:\:{and}\: \\ $$$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{A}_{\lambda} \:{d}\lambda \\ $$

Question Number 68594    Answers: 0   Comments: 0

calculate ∫_0 ^(2π) (dx/(cosx +sin(2x)))

$${calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\frac{{dx}}{{cosx}\:+{sin}\left(\mathrm{2}{x}\right)} \\ $$

Question Number 68593    Answers: 0   Comments: 1

calculate Σ_(n=1) ^∞ (((−1)^n )/(n(2n+1)^2 ))

$${calculate}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$

Question Number 68592    Answers: 0   Comments: 2

find Σ_(n=1) ^∞ (1/(n^2 (n+1)^3 ))

$${find}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)^{\mathrm{3}} } \\ $$

Question Number 68591    Answers: 0   Comments: 6

Question Number 68589    Answers: 1   Comments: 0

Question Number 68632    Answers: 0   Comments: 0

(sin(π/9) + i sin((3π)/(18)))^(−9)

$$\left({sin}\frac{\pi}{\mathrm{9}}\:+\:{i}\:{sin}\frac{\mathrm{3}\pi}{\mathrm{18}}\right)^{−\mathrm{9}} \\ $$

Question Number 68554    Answers: 0   Comments: 4

Question Number 68549    Answers: 1   Comments: 3

y=(x^3 /(x^2 +1)) y^(−1) =...

$${y}=\frac{{x}^{\mathrm{3}} }{{x}^{\mathrm{2}} +\mathrm{1}} \\ $$$${y}^{−\mathrm{1}} =... \\ $$

Question Number 68546    Answers: 1   Comments: 0

find the range and domain of f(x) f(x)=(√(sin^(−1) (ln(x/(10)))))

$${find}\:{the}\:{range}\:{and}\:{domain}\:{of}\:{f}\left({x}\right) \\ $$$$ \\ $$$${f}\left({x}\right)=\sqrt{{sin}^{−\mathrm{1}} \left({ln}\frac{{x}}{\mathrm{10}}\right)} \\ $$

Question Number 68541    Answers: 1   Comments: 1

Question Number 68537    Answers: 2   Comments: 0

Question Number 68532    Answers: 0   Comments: 0

Question Number 68521    Answers: 0   Comments: 1

lim_(x→0) ((4 sin x + 2 tan x − 6x)/x^5 ) = ? Without L′Hospital

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\frac{\mathrm{4}\:\mathrm{sin}\:{x}\:+\:\mathrm{2}\:\mathrm{tan}\:{x}\:−\:\mathrm{6}{x}}{{x}^{\mathrm{5}} }\:\:=\:\:? \\ $$$${Without}\:\:{L}'{Hospital} \\ $$

Question Number 68517    Answers: 0   Comments: 0

Question Number 68515    Answers: 1   Comments: 2

Question Number 68510    Answers: 1   Comments: 0

Question Number 68509    Answers: 0   Comments: 0

Question Number 68508    Answers: 0   Comments: 0

Question Number 68506    Answers: 0   Comments: 0

y′=4y^2 +x^2 +1 what the primitive solution

$${y}'=\mathrm{4}{y}^{\mathrm{2}} +{x}^{\mathrm{2}} +\mathrm{1} \\ $$$${what}\:{the}\:{primitive}\:{solution} \\ $$

Question Number 68503    Answers: 0   Comments: 8

Question Number 68524    Answers: 1   Comments: 0

Question Number 68528    Answers: 0   Comments: 0

lim_(t→∞) [(1/t) ∫_1 ^( t) (t)^(1/x) dx]

$$\underset{{t}\rightarrow\infty} {\mathrm{lim}}\:\left[\frac{\mathrm{1}}{{t}}\:\int_{\mathrm{1}} ^{\:{t}} \:\sqrt[{{x}}]{{t}}\:{dx}\right] \\ $$

Question Number 68495    Answers: 1   Comments: 1

Whats is the value of sin (6°)?

$$\mathrm{Whats}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{sin}\:\left(\mathrm{6}°\right)? \\ $$

Question Number 68493    Answers: 1   Comments: 0

My question is about the analogical axiams of the foundation geometry in mathematocs. As it Is a well knowen axum in geometry starts from the sefinition of a point which gives gives the path analogically to line, plane, and solids. Know my truoble comes at these axiumes areise from not ne being they are aziyma ^ but the analogu effect at giving the definatiom of the solid} 1−Apoimt is a dimenstin less. mathematixal abstruct. 2− a line is the collextom of points which has only one dimension. 3− a plane is the collection of lines which have onlu?two dimensions 3−a solid is the collwxripm of plans which has three dimensions. Now the first three definationa arsties are mathe are mathematical ideasor abstruct while the last mathematical abstruct is real. ow on earth a real object is formed from the collextion of unreal planes

$${My}\:{question}\:{is}\:{about}\:{the}\:{analogical} \\ $$$${axiams}\:{of}\:{the}\:{foundation}\:{geometry}\:{in} \\ $$$${mathematocs}. \\ $$$${As}\:{it}\:{Is}\:\:{a}\:{well}\:{knowen}\:{axum}\:{in}\:\:{geometry} \\ $$$${starts}\:{from}\:{the}\:{sefinition}\:{of}\:{a}\:{point}\:{which}\:{gives} \\ $$$${gives}\:{the}\:{path}\:{analogically}\:\:{to}\:{line},\:{plane},\:{and}\: \\ $$$${solids}. \\ $$$${Know}\:{my}\:{truoble}\:\:{comes}\:{at}\:{these} \\ $$$${axiumes}\:{areise}\:{from}\:{not}\:{ne}\:{being}\:{they} \\ $$$${are}\:{aziyma}\bar {\:}{but}\:{the}\:{analogu}\:{effect}\:{at} \\ $$$$\left.{giving}\:{the}\:{definatiom}\:{of}\:{the}\:{solid}\right\} \\ $$$$\mathrm{1}−{Apoimt}\:{is}\:{a}\:{dimenstin}\:{less}. \\ $$$$\:{mathematixal}\:{abstruct}. \\ $$$$\mathrm{2}−\:{a}\:{line}\:{is}\:{the}\:{collextom}\:{of}\:{points} \\ $$$$\:\:{which}\:{has}\:{only}\:{one}\:{dimension}. \\ $$$$\mathrm{3}−\:{a}\:{plane}\:{is}\:{the}\:{collection}\:\:{of}\:{lines}\: \\ $$$${which}\:{have}\:{onlu}?{two}\:{dimensions}\: \\ $$$$\mathrm{3}−{a}\:\:{solid}\:{is}\:{the}\:{collwxripm}\:{of}\:{plans} \\ $$$${which}\:{has}\:{three}\:{dimensions}. \\ $$$$ \\ $$$$\:\:\:\:\:\:{Now}\:{the}\:{first}\:{three}\:{definationa}\:{arsties}\:{are}\:{mathe} \\ $$$${are}\:{mathematical}\:{ideasor}\:{abstruct} \\ $$$${while}\:{the}\:{last}\:{mathematical}\:{abstruct}\:{is}\:{real}. \\ $$$${ow}\:{on}\:{earth}\:{a}\:{real}\:{object}\:{is}\:{formed} \\ $$$${from}\:{the}\:{collextion}\:{of}\:{unreal}\:{planes} \\ $$

  Pg 1416      Pg 1417      Pg 1418      Pg 1419      Pg 1420      Pg 1421      Pg 1422      Pg 1423      Pg 1424      Pg 1425   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com