Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 142

Question Number 197589    Answers: 1   Comments: 0

how many natural numbers with 4 different digits are divisible by 3?

$${how}\:{many}\:{natural}\:{numbers}\:{with}\:\mathrm{4} \\ $$$${different}\:{digits}\:{are}\:{divisible}\:{by}\:\mathrm{3}? \\ $$

Question Number 197169    Answers: 2   Comments: 0

7x+4y=2

$$\mathrm{7}{x}+\mathrm{4}{y}=\mathrm{2} \\ $$

Question Number 197155    Answers: 1   Comments: 0

A bullet of mass 180g is fired horizontally into a fixed wooden block with a speed of 24m/s. if the bullet is brought to rest in 0.4sec by a constant resistance, calculate the distance moved by the bullet in the wood

$$\:{A}\:{bullet}\:{of}\:{mass}\:\mathrm{180}{g}\:{is}\:{fired}\: \\ $$$$\:{horizontally}\:{into}\:{a}\:{fixed}\:{wooden}\: \\ $$$$\:{block}\:{with}\:{a}\:{speed}\:{of}\:\mathrm{24}{m}/{s}.\:{if}\:{the}\: \\ $$$${bullet}\:{is}\:{brought}\:{to}\:{rest}\:{in}\:\mathrm{0}.\mathrm{4}{sec}\:{by}\:{a} \\ $$$${constant}\:{resistance},\:{calculate}\:{the} \\ $$$${distance}\:{moved}\:{by}\:{the}\:{bullet}\:{in}\:{the} \\ $$$${wood} \\ $$

Question Number 197147    Answers: 2   Comments: 0

Question Number 197146    Answers: 1   Comments: 0

Find: Ω = ∫_0 ^( 1) ((Li(x))/(Ψ(x))) dx = ?

$$\mathrm{Find}:\:\:\:\Omega\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\mathrm{Li}\left(\mathrm{x}\right)}{\Psi\left(\mathrm{x}\right)}\:\mathrm{dx}\:=\:? \\ $$

Question Number 197133    Answers: 1   Comments: 0

Question Number 197132    Answers: 1   Comments: 1

∫^( +∞) _( 0) (((ln(t+(√(1+t^2 ))))/t))^2 =(π^2 /2)

$$\underset{\:\mathrm{0}} {\int}^{\:+\infty} \left(\frac{\mathrm{ln}\left(\mathrm{t}+\sqrt{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }\right)}{\mathrm{t}}\right)^{\mathrm{2}} =\frac{\pi^{\mathrm{2}} }{\mathrm{2}} \\ $$

Question Number 197129    Answers: 2   Comments: 0

Question Number 197128    Answers: 1   Comments: 1

Question Number 197125    Answers: 1   Comments: 1

Question Number 197113    Answers: 1   Comments: 0

Prove that ∫^( +∞) _( 0) (((ln(t+(√(1+t^2 ))))/t))dt=(π^2 /2)

$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\underset{\:\mathrm{0}} {\int}^{\:+\infty} \left(\frac{{ln}\left({t}+\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }\right)}{{t}}\right){dt}=\frac{\pi^{\mathrm{2}} }{\mathrm{2}} \\ $$

Question Number 197112    Answers: 2   Comments: 0

Question Number 197111    Answers: 1   Comments: 0

$$\:\:\:\:\:\:\cancel{ } \\ $$

Question Number 197110    Answers: 1   Comments: 0

Question Number 197104    Answers: 0   Comments: 3

Question Number 197099    Answers: 2   Comments: 0

∫^( (π/2)) _( 0) ((ln(cost))/(sint)) dt=???

$$\underset{\:\mathrm{0}} {\int}^{\:\frac{\pi}{\mathrm{2}}} \frac{\mathrm{ln}\left(\mathrm{cos}{t}\right)}{\mathrm{sin}{t}}\:\mathrm{d}{t}=??? \\ $$

Question Number 197095    Answers: 1   Comments: 0

Question Number 197094    Answers: 1   Comments: 0

Question Number 197089    Answers: 2   Comments: 0

Simplify (((1+(√3)i)/(1−(√3)i)))^(10)

$$\mathrm{Simplify}\:\left(\frac{\mathrm{1}+\sqrt{\mathrm{3}}\mathrm{i}}{\mathrm{1}−\sqrt{\mathrm{3}}\mathrm{i}}\right)^{\mathrm{10}} \\ $$

Question Number 197081    Answers: 0   Comments: 5

Question Number 197073    Answers: 1   Comments: 0

Question Number 197072    Answers: 2   Comments: 0

tan123=k tan167=?

$$\mathrm{tan123}=\boldsymbol{\mathrm{k}} \\ $$$$\mathrm{tan167}=? \\ $$

Question Number 197064    Answers: 2   Comments: 0

Question Number 197063    Answers: 1   Comments: 0

Question Number 197060    Answers: 1   Comments: 1

Prove that ∫^( (π/2)) _( 0) ((ln(1+αsint))/(sint))dt= (π^2 /8)−(1/2)(arccosα)^2

$$\mathrm{Prove}\:\mathrm{that}\: \\ $$$$\underset{\:\mathrm{0}} {\int}^{\:\frac{\pi}{\mathrm{2}}} \frac{\mathrm{ln}\left(\mathrm{1}+\alpha\mathrm{sin}{t}\right)}{\mathrm{sin}{t}}{dt}=\:\frac{\pi^{\mathrm{2}} }{\mathrm{8}}−\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{arccos}\alpha\right)^{\mathrm{2}} \\ $$

Question Number 197057    Answers: 3   Comments: 2

  Pg 137      Pg 138      Pg 139      Pg 140      Pg 141      Pg 142      Pg 143      Pg 144      Pg 145      Pg 146   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com