Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1419

Question Number 59946    Answers: 1   Comments: 1

Question Number 59942    Answers: 1   Comments: 0

f(2x−5) + f(3x+5) = 7x−16 f(x) = ?

$${f}\left(\mathrm{2}{x}−\mathrm{5}\right)\:+\:{f}\left(\mathrm{3}{x}+\mathrm{5}\right)\:\:=\:\:\mathrm{7}{x}−\mathrm{16} \\ $$$${f}\left({x}\right)\:\:=\:\:? \\ $$

Question Number 59936    Answers: 1   Comments: 0

Question Number 59935    Answers: 0   Comments: 1

sir malwan you must revise analytical function and complex analysis...

$${sir}\:{malwan}\:{you}\:{must}\:{revise}\:\:{analytical}\:{function}\:{and}\:{complex}\:{analysis}... \\ $$

Question Number 59932    Answers: 0   Comments: 0

Question Number 59929    Answers: 0   Comments: 0

Use long division to solve 7485/5

$$\mathrm{Use}\:\mathrm{long}\:\mathrm{division}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{7485}/\mathrm{5} \\ $$

Question Number 59926    Answers: 2   Comments: 1

Question Number 59907    Answers: 0   Comments: 0

Question Number 59906    Answers: 0   Comments: 0

∫(2x−1)dx

$$\int\left(\mathrm{2x}−\mathrm{1}\right)\mathrm{dx} \\ $$

Question Number 59905    Answers: 0   Comments: 1

∫(2x−1)^ 20

$$\int\left(\mathrm{2x}−\mathrm{1}\hat {\right)}\mathrm{20} \\ $$

Question Number 59904    Answers: 0   Comments: 0

(2x−1)^ 20

$$\left(\mathrm{2x}−\mathrm{1}\hat {\right)}\mathrm{20} \\ $$

Question Number 59902    Answers: 0   Comments: 1

∫sin (x)dx

$$\int\mathrm{sin}\:\left({x}\right){dx} \\ $$

Question Number 59901    Answers: 0   Comments: 0

∫sin (x)

$$\int\mathrm{sin}\:\left({x}\right) \\ $$

Question Number 59893    Answers: 0   Comments: 7

Question Number 59892    Answers: 2   Comments: 2

Question Number 59882    Answers: 0   Comments: 5

∫_0 ^∞ ((sin(x))/(x(x^2 +1))) dx

$$\int_{\mathrm{0}} ^{\infty} \frac{{sin}\left({x}\right)}{{x}\left({x}^{\mathrm{2}} +\mathrm{1}\right)}\:{dx} \\ $$

Question Number 59976    Answers: 2   Comments: 0

∫_( 0) ^(π/2) ((f(x))/(f(x)+f((π/2)−x))) dx =

$$\underset{\:\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\:\frac{{f}\left({x}\right)}{{f}\left({x}\right)+{f}\left(\frac{\pi}{\mathrm{2}}−{x}\right)}\:{dx}\:= \\ $$

Question Number 59975    Answers: 1   Comments: 0

Question Number 59872    Answers: 1   Comments: 0

solve the o d e (1+siny)dx={2ycos y−x(secy+tany)}dy

$${solve}\:{the}\:{o}\:{d}\:{e} \\ $$$$\left(\mathrm{1}+{siny}\right){dx}=\left\{\mathrm{2}{y}\mathrm{cos}\:{y}−{x}\left({secy}+{tany}\right)\right\}{dy} \\ $$

Question Number 59870    Answers: 2   Comments: 7

Question Number 59861    Answers: 2   Comments: 2

(√(a+b(√c)))=(√((a+(√(a^2 −b^2 c)))/2))+(√((a−(√(a^2 −b^2 c)))/2)). prove

$$\sqrt{\boldsymbol{{a}}+\boldsymbol{{b}}\sqrt{\boldsymbol{{c}}}}=\sqrt{\frac{\boldsymbol{{a}}+\sqrt{\boldsymbol{{a}}^{\mathrm{2}} −\boldsymbol{{b}}^{\mathrm{2}} \boldsymbol{{c}}}}{\mathrm{2}}}+\sqrt{\frac{\boldsymbol{{a}}−\sqrt{\boldsymbol{{a}}^{\mathrm{2}} −\boldsymbol{{b}}^{\mathrm{2}} \boldsymbol{{c}}}}{\mathrm{2}}}. \\ $$$$\boldsymbol{{prove}} \\ $$

Question Number 59858    Answers: 0   Comments: 0

P(1)=(1/i) P_(n+1) P_n =1−P_(n+1) lim_(n→∞) Im(P_n ) =?

$$\mathrm{P}\left(\mathrm{1}\right)=\frac{\mathrm{1}}{{i}}\: \\ $$$$\mathrm{P}_{\mathrm{n}+\mathrm{1}} \mathrm{P}_{\mathrm{n}} =\mathrm{1}−\mathrm{P}_{\mathrm{n}+\mathrm{1}} \\ $$$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}Im}\left(\mathrm{P}_{\mathrm{n}} \right)\:=? \\ $$

Question Number 59846    Answers: 0   Comments: 8

Question Number 59842    Answers: 1   Comments: 3

Question Number 59838    Answers: 1   Comments: 1

What is the nth derivative of sinx in terms of the sine function?

$${What}\:{is}\:{the}\:{nth}\:{derivative}\:{of}\:{sinx}\:{in} \\ $$$${terms}\:{of}\:{the}\:{sine}\:{function}? \\ $$

Question Number 59835    Answers: 1   Comments: 0

  Pg 1414      Pg 1415      Pg 1416      Pg 1417      Pg 1418      Pg 1419      Pg 1420      Pg 1421      Pg 1422      Pg 1423   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com