Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1417

Question Number 64159    Answers: 1   Comments: 1

calculate ∫_0 ^1 (dx/(3+2^x ))

$${calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dx}}{\mathrm{3}+\mathrm{2}^{{x}} } \\ $$

Question Number 64158    Answers: 0   Comments: 0

Question Number 64153    Answers: 1   Comments: 0

solve to z^2 x^2 −y^2 =24

$${solve}\:{to}\:{z}^{\mathrm{2}} \:\:\:{x}^{\mathrm{2}} −{y}^{\mathrm{2}} =\mathrm{24} \\ $$

Question Number 64150    Answers: 1   Comments: 2

calculate ∫_(−∞) ^(+∞) (dx/((x^2 +1)(x^2 +2)(x^2 +3)))

$${calculate}\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}^{\mathrm{2}} +\mathrm{2}\right)\left({x}^{\mathrm{2}} +\mathrm{3}\right)} \\ $$

Question Number 64147    Answers: 2   Comments: 0

Question Number 64139    Answers: 1   Comments: 2

∫_( 0) ^1 (dx/(x^2 +2x cos α+1)) = α sin α

$$\underset{\:\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\:\:\frac{{dx}}{{x}^{\mathrm{2}} +\mathrm{2}{x}\:\mathrm{cos}\:\alpha+\mathrm{1}}\:=\:\alpha\:\mathrm{sin}\:\alpha \\ $$

Question Number 64138    Answers: 1   Comments: 0

Question Number 64130    Answers: 2   Comments: 1

(√(4x+((12)/x)))=((x^2 +7)/(x+1)) x=?

$$\sqrt{\mathrm{4}\boldsymbol{\mathrm{x}}+\frac{\mathrm{12}}{\boldsymbol{\mathrm{x}}}}=\frac{\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\mathrm{7}}{\boldsymbol{\mathrm{x}}+\mathrm{1}} \\ $$$$\boldsymbol{\mathrm{x}}=? \\ $$

Question Number 64129    Answers: 0   Comments: 0

Question Number 64126    Answers: 1   Comments: 0

Question Number 64124    Answers: 0   Comments: 0

(√(2014))x^3 −4029x^2 +2=0 x_1 <x_2 <x_3 x_2 (x_1 +x_3 )=?

$$\sqrt{\mathrm{2014}}\boldsymbol{\mathrm{x}}^{\mathrm{3}} −\mathrm{4029}\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\mathrm{2}=\mathrm{0} \\ $$$$\boldsymbol{\mathrm{x}}_{\mathrm{1}} <\boldsymbol{\mathrm{x}}_{\mathrm{2}} <\boldsymbol{\mathrm{x}}_{\mathrm{3}} \\ $$$$\boldsymbol{\mathrm{x}}_{\mathrm{2}} \left(\boldsymbol{\mathrm{x}}_{\mathrm{1}} +\boldsymbol{\mathrm{x}}_{\mathrm{3}} \right)=? \\ $$

Question Number 64122    Answers: 0   Comments: 0

∫tan(1/x)dx

$$\int{tan}\left(\mathrm{1}/{x}\right){dx} \\ $$

Question Number 64121    Answers: 0   Comments: 0

∫tan(1/x)dx

$$\int{tan}\left(\mathrm{1}/{x}\right){dx} \\ $$

Question Number 64119    Answers: 3   Comments: 1

Question Number 64111    Answers: 0   Comments: 0

Question Number 64112    Answers: 2   Comments: 1

Question Number 64106    Answers: 0   Comments: 0

∫tan(1/x)dx

$$\int{tan}\left(\mathrm{1}/{x}\right){dx} \\ $$

Question Number 64105    Answers: 0   Comments: 0

∫tan(1/x)dx

$$\int{tan}\left(\mathrm{1}/{x}\right){dx} \\ $$

Question Number 64104    Answers: 0   Comments: 0

∫tan(1/x)dx

$$\int{tan}\left(\mathrm{1}/{x}\right){dx} \\ $$

Question Number 64103    Answers: 0   Comments: 0

∫tan(1/x)dx

$$\int{tan}\left(\mathrm{1}/{x}\right){dx} \\ $$

Question Number 64102    Answers: 0   Comments: 0

∫tan(1/x)dx

$$\int{tan}\left(\mathrm{1}/{x}\right){dx} \\ $$

Question Number 64101    Answers: 0   Comments: 1

why the first ionisation(△H_(i1) )energy of Oxygen smaller than the second? A. Due to the nuclear charge B. Due to the distance of the electron from the nucleus C. Due to the effect of spin−pair repulsion D. Due to a shielding effect.

$${why}\:{the}\:{first}\:{ionisation}\left(\bigtriangleup{H}_{{i}\mathrm{1}} \right){energy}\:{of}\:{Oxygen}\:{smaller} \\ $$$${than}\:{the}\:{second}? \\ $$$${A}.\:{Due}\:{to}\:{the}\:{nuclear}\:{charge} \\ $$$${B}.\:{Due}\:{to}\:{the}\:{distance}\:{of}\:{the}\:{electron}\:{from}\:{the}\:{nucleus} \\ $$$${C}.\:{Due}\:{to}\:{the}\:{effect}\:{of}\:{spin}−{pair}\:{repulsion} \\ $$$${D}.\:{Due}\:{to}\:{a}\:{shielding}\:{effect}. \\ $$

Question Number 64097    Answers: 1   Comments: 1

Question Number 64092    Answers: 1   Comments: 0

prove that u=mgh

$${prove}\:{that}\: \\ $$$${u}={mgh} \\ $$

Question Number 64085    Answers: 0   Comments: 0

please just read equation of a line and a plane in vectors. i don′t understand (r−a)×b=0 ??

$${please}\:{just}\:{read}\:{equation}\:{of}\:{a}\:{line}\:{and}\:{a}\:{plane}\:{in}\:{vectors}. \\ $$$${i}\:{don}'{t}\:{understand}\: \\ $$$$\:\:\left(\boldsymbol{{r}}−\boldsymbol{{a}}\right)×\boldsymbol{{b}}=\mathrm{0}\:\:?? \\ $$

Question Number 64086    Answers: 0   Comments: 5

if 3x + 5y = 1 use Bezout′s identity to find the value of x and y

$${if}\:\:\:\mathrm{3}{x}\:+\:\mathrm{5}{y}\:=\:\mathrm{1} \\ $$$${use}\:{Bezout}'{s}\:{identity}\:{to}\:{find}\:{the}\:{value}\:{of}\:{x}\:{and}\:{y} \\ $$

  Pg 1412      Pg 1413      Pg 1414      Pg 1415      Pg 1416      Pg 1417      Pg 1418      Pg 1419      Pg 1420      Pg 1421   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com