Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1417

Question Number 62925    Answers: 1   Comments: 0

Three friends , Boakye , kwame and kojo thinking that they are decieving their parents decided to take turns to run away from their parent . Boakye run away on monday of the first week. After how many weeks will he run again on monday?

$$\mathrm{Three}\:\mathrm{friends}\:,\:\mathrm{Boakye}\:,\:\mathrm{kwame}\:\mathrm{and}\: \\ $$$$\mathrm{kojo}\:\mathrm{thinking}\:\mathrm{that}\:\mathrm{they}\:\mathrm{are}\:\mathrm{decieving}\: \\ $$$$\mathrm{their}\:\mathrm{parents}\:\mathrm{decided}\:\mathrm{to}\:\mathrm{take}\:\mathrm{turns}\:\mathrm{to}\: \\ $$$$\mathrm{run}\:\mathrm{away}\:\mathrm{from}\:\mathrm{their}\:\mathrm{parent}\:. \\ $$$$\mathrm{Boakye}\:\mathrm{run}\:\mathrm{away}\:\mathrm{on}\:\mathrm{monday}\:\mathrm{of}\:\mathrm{the}\:\mathrm{first} \\ $$$$\mathrm{week}.\:\mathrm{After}\:\mathrm{how}\:\mathrm{many}\:\:\mathrm{weeks}\:\mathrm{will}\: \\ $$$$\mathrm{he}\:\mathrm{run}\:\mathrm{again}\:\mathrm{on}\:\mathrm{monday}? \\ $$

Question Number 62924    Answers: 1   Comments: 2

find min_((a,b)∈R^2 ) ∫_(−1) ^1 (ax+b)^2 dx

$${find}\:{min}_{\left({a},{b}\right)\in{R}^{\mathrm{2}} } \:\:\:\:\:\int_{−\mathrm{1}} ^{\mathrm{1}} \left({ax}+{b}\right)^{\mathrm{2}} {dx} \\ $$

Question Number 62919    Answers: 0   Comments: 1

kelvin and price were contesting for an election in the year 2016, kelvin lost the election and prince won the election thursday of the second week of December. After how many days will prince win the election again on thursday if the eletion is postponed to the first week of january. suppose (kelvin continious to loose the eletion again in the next four years to come). please help me solve this quetion

$$\mathrm{kelvin}\:\mathrm{and}\:\mathrm{price}\:\mathrm{were}\:\mathrm{contesting}\:\mathrm{for}\:\mathrm{an} \\ $$$$\mathrm{election}\:\mathrm{in}\:\mathrm{the}\:\mathrm{year}\:\mathrm{2016},\:\mathrm{kelvin}\:\mathrm{lost}\:\mathrm{the} \\ $$$$\mathrm{election}\:\mathrm{and}\:\:\mathrm{prince}\:\mathrm{won}\:\mathrm{the}\:\mathrm{election}\:\mathrm{thursday} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{second}\:\mathrm{week}\:\mathrm{of}\:\mathrm{December}.\:\mathrm{After} \\ $$$$\mathrm{how}\:\mathrm{many}\:\mathrm{days}\:\mathrm{will}\:\mathrm{prince}\:\mathrm{win}\:\mathrm{the}\:\mathrm{election} \\ $$$$\mathrm{again}\:\mathrm{on}\:\mathrm{thursday}\:\mathrm{if}\:\mathrm{the}\:\mathrm{eletion}\:\mathrm{is}\:\mathrm{postponed}\:\mathrm{to}\:\mathrm{the} \\ $$$$\mathrm{first}\:\mathrm{week}\:\mathrm{of}\:\mathrm{january}.\:\mathrm{suppose}\:\left(\mathrm{kelvin}\:\mathrm{continious}\right. \\ $$$$\mathrm{to}\:\mathrm{loose}\:\mathrm{the}\:\mathrm{eletion}\:\mathrm{again}\:\mathrm{in}\:\mathrm{the}\:\mathrm{next}\:\mathrm{four} \\ $$$$\left.\mathrm{years}\:\mathrm{to}\:\mathrm{come}\right).\: \\ $$$$ \\ $$$$\mathrm{please}\:\mathrm{help}\:\mathrm{me}\:\mathrm{solve}\:\mathrm{this}\:\mathrm{quetion} \\ $$

Question Number 62914    Answers: 1   Comments: 0

Question Number 62912    Answers: 1   Comments: 0

Question Number 62962    Answers: 0   Comments: 0

P(x)=tan^(−1) (x)=Σ_(n=0) ^∞ (((−1)^n x^(2n+1) )/(2n+1)) P_(1000) (x)=? what is this sum in terms of x?

$${P}\left({x}\right)=\mathrm{tan}^{−\mathrm{1}} \left({x}\right)=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} {x}^{\mathrm{2}{n}+\mathrm{1}} }{\mathrm{2}{n}+\mathrm{1}}\: \\ $$$${P}_{\mathrm{1000}} \left({x}\right)=?\:{what}\:{is}\:{this}\:{sum}\:{in}\:{terms}\:{of}\:{x}? \\ $$

Question Number 62908    Answers: 0   Comments: 1

∫((arctan(x))/x)dx

$$\int\frac{{arctan}\left({x}\right)}{{x}}{dx} \\ $$

Question Number 62907    Answers: 1   Comments: 1

∫(√(((1+x)/(1−x)) ))(1+x) dx

$$\int\sqrt{\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}\:}\left(\mathrm{1}+{x}\right)\:{dx} \\ $$

Question Number 62923    Answers: 2   Comments: 0

Question Number 62906    Answers: 0   Comments: 3

∫x^x dx

$$\int\mathrm{x}^{\mathrm{x}} \mathrm{dx} \\ $$

Question Number 62895    Answers: 1   Comments: 2

Question Number 62885    Answers: 0   Comments: 0

Question Number 62889    Answers: 1   Comments: 0

Question Number 62882    Answers: 0   Comments: 3

let f(x)=ln∣((x−1)/(x+1))∣ 1)determine D_f 2) calculatef^((n)) (x) and f^((n)) (0) 3) developp f at integr serie 4) calculate ∫_(−(1/2)) ^(1/2) f(x)dx .

$${let}\:{f}\left({x}\right)={ln}\mid\frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}\mid \\ $$$$\left.\mathrm{1}\right){determine}\:{D}_{{f}} \\ $$$$\left.\mathrm{2}\right)\:{calculatef}^{\left({n}\right)} \left({x}\right)\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{3}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie} \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:\int_{−\frac{\mathrm{1}}{\mathrm{2}}} ^{\frac{\mathrm{1}}{\mathrm{2}}} {f}\left({x}\right){dx}\:. \\ $$

Question Number 62880    Answers: 0   Comments: 1

when f(E^c ) is equal to (f(E))^c

$${when}\:\:{f}\left({E}^{{c}} \right)\:{is}\:{equal}\:{to}\:\left({f}\left({E}\right)\right)^{{c}} \\ $$

Question Number 62879    Answers: 1   Comments: 0

calculate min Σ_(0≤i≤n and 0≤j≤n) (i+j)

$${calculate}\:{min}\:\sum_{\mathrm{0}\leqslant{i}\leqslant{n}\:\:{and}\:\mathrm{0}\leqslant{j}\leqslant{n}} \:\left({i}+{j}\right) \\ $$

Question Number 62878    Answers: 1   Comments: 0

calculate min Σ_(0≤i≤n and 0≤j≤n) i.j

$${calculate}\:{min}\:\sum_{\mathrm{0}\leqslant{i}\leqslant{n}\:{and}\:\mathrm{0}\leqslant{j}\leqslant{n}} \:\:\:\:{i}.{j} \\ $$

Question Number 62877    Answers: 0   Comments: 1

calculate lim_(n→+∞) Σ_(k=0) ^(2n+1) (n/(n^2 +k))

$${calculate}\:{lim}_{{n}\rightarrow+\infty} \:\sum_{{k}=\mathrm{0}} ^{\mathrm{2}{n}+\mathrm{1}} \:\frac{{n}}{{n}^{\mathrm{2}} \:+{k}} \\ $$

Question Number 62874    Answers: 0   Comments: 3

lim_(x→0) ((sin(6x))/(tan(5x))) how to solve this w/o L′hospital′s rule?

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{sin}\left(\mathrm{6}{x}\right)}{{tan}\left(\mathrm{5}{x}\right)} \\ $$$$ \\ $$$${how}\:\:{to}\:\:{solve}\:\:{this}\:\:{w}/{o}\:\:{L}'{hospital}'{s}\:\:{rule}? \\ $$

Question Number 62861    Answers: 3   Comments: 10

Question Number 62869    Answers: 1   Comments: 0

y(dy/dx) − (y/(dy/dx)) = 2a a is a real number

$${y}\frac{{dy}}{{dx}}\:−\:\frac{{y}}{\frac{{dy}}{{dx}}}\:=\:\mathrm{2}{a} \\ $$$$ \\ $$$${a}\:{is}\:{a}\:{real}\:{number} \\ $$

Question Number 62856    Answers: 0   Comments: 3

let f(λ) =∫_0 ^(+∞) (x^4 /(x^6 +λ^6 )) dx with λ>0 1) calculate f(λ) 2) calculate also g(λ) =∫_0 ^∞ (x^4 /((x^6 +λ^6 )^2 ))dx 3) find the values of ∫_0 ^∞ (x^4 /(x^6 +1)) dx , ∫_0 ^∞ (x^4 /(x^6 +8))dx and ∫_0 ^∞ (x^4 /((x^6 +8)^2 ))dx.

$${let}\:{f}\left(\lambda\right)\:=\int_{\mathrm{0}} ^{+\infty} \:\:\:\frac{{x}^{\mathrm{4}} }{{x}^{\mathrm{6}} \:+\lambda^{\mathrm{6}} }\:{dx}\:\:\:{with}\:\lambda>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:\:{f}\left(\lambda\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{also}\:{g}\left(\lambda\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}^{\mathrm{4}} }{\left({x}^{\mathrm{6}} \:+\lambda^{\mathrm{6}} \right)^{\mathrm{2}} }{dx} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{the}\:{values}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{x}^{\mathrm{4}} }{{x}^{\mathrm{6}} \:+\mathrm{1}}\:{dx}\:,\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{x}^{\mathrm{4}} }{{x}^{\mathrm{6}} \:+\mathrm{8}}{dx}\:{and}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{x}^{\mathrm{4}} }{\left({x}^{\mathrm{6}} +\mathrm{8}\right)^{\mathrm{2}} }{dx}. \\ $$

Question Number 62855    Answers: 0   Comments: 1

find ∫ ((x^4 /(1+x^6 )))^2 dx 2) calculate ∫_0 ^1 (x^8 /((1+x^6 )^2 ))dx 3) calculate ∫_0 ^(+∞) (x^8 /((1+x^6 )^2 ))dx .

$${find}\:\int\:\:\left(\frac{{x}^{\mathrm{4}} }{\mathrm{1}+{x}^{\mathrm{6}} }\right)^{\mathrm{2}} \:{dx} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{x}^{\mathrm{8}} }{\left(\mathrm{1}+{x}^{\mathrm{6}} \right)^{\mathrm{2}} }{dx} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\int_{\mathrm{0}} ^{+\infty} \:\:\frac{{x}^{\mathrm{8}} }{\left(\mathrm{1}+{x}^{\mathrm{6}} \right)^{\mathrm{2}} }{dx}\:. \\ $$

Question Number 62850    Answers: 1   Comments: 1

Question Number 62844    Answers: 1   Comments: 0

Let p(x) = ax^2 + bx + c be such that p(x) takes real values for real values of x and non−real values for non−real values of x . Prove that a = 0 and find all possible values of c.

$${Let}\:{p}\left({x}\right)\:=\:{ax}^{\mathrm{2}} \:+\:{bx}\:+\:{c}\:\:{be}\:{such}\:{that}\:{p}\left({x}\right)\:{takes}\:{real}\:{values} \\ $$$${for}\:{real}\:{values}\:{of}\:{x}\:{and}\:{non}−{real}\:{values}\:{for}\:{non}−{real} \\ $$$${values}\:{of}\:{x}\:.\:{Prove}\:{that}\:{a}\:=\:\mathrm{0}\:{and}\:{find}\:{all} \\ $$$${possible}\:{values}\:{of}\:{c}. \\ $$

Question Number 62839    Answers: 1   Comments: 3

  Pg 1412      Pg 1413      Pg 1414      Pg 1415      Pg 1416      Pg 1417      Pg 1418      Pg 1419      Pg 1420      Pg 1421   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com