Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1415

Question Number 68528    Answers: 0   Comments: 0

lim_(t→∞) [(1/t) ∫_1 ^( t) (t)^(1/x) dx]

$$\underset{{t}\rightarrow\infty} {\mathrm{lim}}\:\left[\frac{\mathrm{1}}{{t}}\:\int_{\mathrm{1}} ^{\:{t}} \:\sqrt[{{x}}]{{t}}\:{dx}\right] \\ $$

Question Number 68495    Answers: 1   Comments: 1

Whats is the value of sin (6°)?

$$\mathrm{Whats}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{sin}\:\left(\mathrm{6}°\right)? \\ $$

Question Number 68493    Answers: 1   Comments: 0

My question is about the analogical axiams of the foundation geometry in mathematocs. As it Is a well knowen axum in geometry starts from the sefinition of a point which gives gives the path analogically to line, plane, and solids. Know my truoble comes at these axiumes areise from not ne being they are aziyma ^ but the analogu effect at giving the definatiom of the solid} 1−Apoimt is a dimenstin less. mathematixal abstruct. 2− a line is the collextom of points which has only one dimension. 3− a plane is the collection of lines which have onlu?two dimensions 3−a solid is the collwxripm of plans which has three dimensions. Now the first three definationa arsties are mathe are mathematical ideasor abstruct while the last mathematical abstruct is real. ow on earth a real object is formed from the collextion of unreal planes

$${My}\:{question}\:{is}\:{about}\:{the}\:{analogical} \\ $$$${axiams}\:{of}\:{the}\:{foundation}\:{geometry}\:{in} \\ $$$${mathematocs}. \\ $$$${As}\:{it}\:{Is}\:\:{a}\:{well}\:{knowen}\:{axum}\:{in}\:\:{geometry} \\ $$$${starts}\:{from}\:{the}\:{sefinition}\:{of}\:{a}\:{point}\:{which}\:{gives} \\ $$$${gives}\:{the}\:{path}\:{analogically}\:\:{to}\:{line},\:{plane},\:{and}\: \\ $$$${solids}. \\ $$$${Know}\:{my}\:{truoble}\:\:{comes}\:{at}\:{these} \\ $$$${axiumes}\:{areise}\:{from}\:{not}\:{ne}\:{being}\:{they} \\ $$$${are}\:{aziyma}\bar {\:}{but}\:{the}\:{analogu}\:{effect}\:{at} \\ $$$$\left.{giving}\:{the}\:{definatiom}\:{of}\:{the}\:{solid}\right\} \\ $$$$\mathrm{1}−{Apoimt}\:{is}\:{a}\:{dimenstin}\:{less}. \\ $$$$\:{mathematixal}\:{abstruct}. \\ $$$$\mathrm{2}−\:{a}\:{line}\:{is}\:{the}\:{collextom}\:{of}\:{points} \\ $$$$\:\:{which}\:{has}\:{only}\:{one}\:{dimension}. \\ $$$$\mathrm{3}−\:{a}\:{plane}\:{is}\:{the}\:{collection}\:\:{of}\:{lines}\: \\ $$$${which}\:{have}\:{onlu}?{two}\:{dimensions}\: \\ $$$$\mathrm{3}−{a}\:\:{solid}\:{is}\:{the}\:{collwxripm}\:{of}\:{plans} \\ $$$${which}\:{has}\:{three}\:{dimensions}. \\ $$$$ \\ $$$$\:\:\:\:\:\:{Now}\:{the}\:{first}\:{three}\:{definationa}\:{arsties}\:{are}\:{mathe} \\ $$$${are}\:{mathematical}\:{ideasor}\:{abstruct} \\ $$$${while}\:{the}\:{last}\:{mathematical}\:{abstruct}\:{is}\:{real}. \\ $$$${ow}\:{on}\:{earth}\:{a}\:{real}\:{object}\:{is}\:{formed} \\ $$$${from}\:{the}\:{collextion}\:{of}\:{unreal}\:{planes} \\ $$

Question Number 68482    Answers: 0   Comments: 1

sin 1^° = ?

$$\mathrm{sin}\:\mathrm{1}^{°} \:=\:? \\ $$

Question Number 68481    Answers: 0   Comments: 6

I=∫_0 ^( 1) (√((c−x^2 )/(x(1−x^2 ))))dx (c >1)

$${I}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \sqrt{\frac{{c}−{x}^{\mathrm{2}} }{{x}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)}}{dx}\:\:\:\:\:\:\left({c}\:>\mathrm{1}\right) \\ $$

Question Number 68576    Answers: 1   Comments: 1

Question Number 68470    Answers: 0   Comments: 3

find the value of ∫_0 ^∞ ((arctan(2x^2 ))/(x^2 +4))dx

$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left(\mathrm{2}{x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} \:+\mathrm{4}}{dx} \\ $$

Question Number 68466    Answers: 1   Comments: 2

let f(x) =∫_x^ ^(x^2 −x) arctan(e^(−x−t) )dt calculate f^′ (x) and f^′ (0).

$${let}\:{f}\left({x}\right)\:=\int_{{x}^{} } ^{{x}^{\mathrm{2}} −{x}} \:{arctan}\left({e}^{−{x}−{t}} \right){dt} \\ $$$${calculate}\:{f}^{'} \left({x}\right)\:\:\:{and}\:{f}^{'} \left(\mathrm{0}\right). \\ $$

Question Number 68473    Answers: 0   Comments: 1

((sin 72°)/(sin 42°)) = p tan 12° = ?

$$\frac{\mathrm{sin}\:\mathrm{72}°}{\mathrm{sin}\:\mathrm{42}°}\:\:=\:\:{p} \\ $$$$\mathrm{tan}\:\mathrm{12}°\:\:=\:\:? \\ $$

Question Number 68451    Answers: 1   Comments: 7

Question Number 68446    Answers: 0   Comments: 1

cos (x−60)+cos (x−30)=sin x prove

$$\mathrm{cos}\:\left({x}−\mathrm{60}\right)+\mathrm{cos}\:\left({x}−\mathrm{30}\right)=\mathrm{sin}\:{x} \\ $$$${prove} \\ $$

Question Number 68434    Answers: 1   Comments: 0

Question Number 68433    Answers: 0   Comments: 0

hello i search som lectur about hypergeometric fonction2F_1 (a,b,c,x)=((Γ(c))/(Γ(a)Γ(b)))Σ_(n≥0) ((Γ(a+n)Γ(b+n))/(Γ(c+n)n!))x^n

$${hello} \\ $$$${i}\:{search}\:{som}\:{lectur}\:{about}\:{hypergeometric}\:{fonction}\mathrm{2}{F}_{\mathrm{1}} \left({a},{b},{c},{x}\right)=\frac{\Gamma\left({c}\right)}{\Gamma\left({a}\right)\Gamma\left({b}\right)}\sum_{{n}\geqslant\mathrm{0}} \frac{\Gamma\left({a}+{n}\right)\Gamma\left({b}+{n}\right)}{\Gamma\left({c}+{n}\right){n}!}{x}^{{n}} \\ $$$$ \\ $$

Question Number 68487    Answers: 1   Comments: 2

Question Number 68425    Answers: 1   Comments: 2

Question Number 68422    Answers: 1   Comments: 0

Question Number 68418    Answers: 1   Comments: 3

Question Number 68414    Answers: 2   Comments: 1

Is it possible to find any value for a,b,c from below system of equetions? { ((sina+sinb=sinc)),((cosa+cosb=cosc)) :}

$$\mathrm{Is}\:\mathrm{it}\:\mathrm{possible}\:\mathrm{to}\:\mathrm{find}\:\mathrm{any}\:\mathrm{value}\:\mathrm{for} \\ $$$$\boldsymbol{\mathrm{a}},\boldsymbol{\mathrm{b}},\boldsymbol{\mathrm{c}}\:\mathrm{from}\:\mathrm{below}\:\mathrm{system}\:\mathrm{of}\:\mathrm{equetions}? \\ $$$$\begin{cases}{\boldsymbol{\mathrm{sina}}+\boldsymbol{\mathrm{sinb}}=\boldsymbol{\mathrm{sinc}}}\\{\boldsymbol{\mathrm{cosa}}+\boldsymbol{\mathrm{cosb}}=\boldsymbol{\mathrm{cosc}}}\end{cases} \\ $$

Question Number 68409    Answers: 1   Comments: 3

calculate ∫_0 ^(+∞) ((arctan(x^2 ))/(1+x^2 ))dx

$${calculate}\:\int_{\mathrm{0}} ^{+\infty} \:\:\frac{{arctan}\left({x}^{\mathrm{2}} \right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$

Question Number 68405    Answers: 1   Comments: 3

There are a few problem reported. Notification: google discontinued Google Cloud Messaging so notifications are not working. Other Problems: There has been several new phone models and android version updates. And newer android version or phone models might have other issues. We are working on app updates for supporting these and also migrating to new messaging platform. We will address these problems as soon as we can.

$$\mathrm{There}\:\mathrm{are}\:\mathrm{a}\:\mathrm{few}\:\mathrm{problem}\:\mathrm{reported}. \\ $$$$\mathrm{Notification}:\:\mathrm{google}\:\mathrm{discontinued} \\ $$$$\mathrm{Google}\:\mathrm{Cloud}\:\mathrm{Messaging}\:\mathrm{so}\:\mathrm{notifications} \\ $$$$\mathrm{are}\:\mathrm{not}\:\mathrm{working}.\: \\ $$$$\mathrm{Other}\:\mathrm{Problems}: \\ $$$$\mathrm{There}\:\mathrm{has}\:\mathrm{been}\:\mathrm{several}\:\mathrm{new}\:\mathrm{phone} \\ $$$$\mathrm{models}\:\mathrm{and}\:\mathrm{android}\:\mathrm{version}\:\mathrm{updates}. \\ $$$$\mathrm{And}\:\mathrm{newer}\:\mathrm{android}\:\mathrm{version}\:\mathrm{or}\:\mathrm{phone} \\ $$$$\mathrm{models}\:\mathrm{might}\:\mathrm{have}\:\mathrm{other}\:\mathrm{issues}. \\ $$$$ \\ $$$$\mathrm{We}\:\mathrm{are}\:\mathrm{working}\:\mathrm{on}\:\mathrm{app}\:\mathrm{updates}\:\mathrm{for} \\ $$$$\mathrm{supporting}\:\mathrm{these}\:\mathrm{and}\:\mathrm{also}\:\mathrm{migrating} \\ $$$$\mathrm{to}\:\mathrm{new}\:\mathrm{messaging}\:\mathrm{platform}. \\ $$$$ \\ $$$$\mathrm{We}\:\mathrm{will}\:\mathrm{address}\:\mathrm{these}\:\mathrm{problems}\:\mathrm{as}\: \\ $$$$\mathrm{soon}\:\mathrm{as}\:\mathrm{we}\:\mathrm{can}. \\ $$

Question Number 68397    Answers: 2   Comments: 0

Question Number 68390    Answers: 1   Comments: 0

Question Number 68370    Answers: 1   Comments: 0

Question Number 68368    Answers: 1   Comments: 1

(1/(x+1)) = y lim_(x+1 → ∞) x tan ((1/(2x+2)))

$$\frac{\mathrm{1}}{{x}+\mathrm{1}}\:=\:{y} \\ $$$$\underset{{x}+\mathrm{1}\:\rightarrow\:\infty} {\mathrm{lim}}\:\:{x}\:\mathrm{tan}\:\left(\frac{\mathrm{1}}{\mathrm{2}{x}+\mathrm{2}}\right) \\ $$

Question Number 68354    Answers: 0   Comments: 6

lim_(x,y→(0,0)) ((x^4 − x^2 y^2 + y^4 )/(x^2 + x^4 y^4 + y^2 ))

$$\underset{{x},\mathrm{y}\rightarrow\left(\mathrm{0},\mathrm{0}\right)} {\mathrm{lim}}\:\frac{\mathrm{x}^{\mathrm{4}} \:−\:\mathrm{x}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{4}} }{\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{x}^{\mathrm{4}} \mathrm{y}^{\mathrm{4}} \:+\:\mathrm{y}^{\mathrm{2}} } \\ $$

Question Number 68353    Answers: 1   Comments: 0

If sin x+sin^2 x=1, then value of cos^2 x+cos^4 x is

$$\mathrm{If}\:\mathrm{sin}\:{x}+\mathrm{sin}^{\mathrm{2}} {x}=\mathrm{1},\:\mathrm{then}\:\mathrm{value}\:\mathrm{of} \\ $$$$\mathrm{cos}^{\mathrm{2}} {x}+\mathrm{cos}^{\mathrm{4}} {x}\:\:\mathrm{is} \\ $$

  Pg 1410      Pg 1411      Pg 1412      Pg 1413      Pg 1414      Pg 1415      Pg 1416      Pg 1417      Pg 1418      Pg 1419   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com