Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1415

Question Number 69173    Answers: 0   Comments: 0

Question Number 68977    Answers: 1   Comments: 4

Question Number 68970    Answers: 1   Comments: 0

∫((3t^2 )/((1+t)^(15) )) dt

$$\int\frac{\mathrm{3}{t}^{\mathrm{2}} }{\left(\mathrm{1}+{t}\right)^{\mathrm{15}} }\:{dt} \\ $$

Question Number 68967    Answers: 1   Comments: 0

Question Number 68966    Answers: 0   Comments: 4

Question Number 68965    Answers: 0   Comments: 2

Question Number 68964    Answers: 0   Comments: 1

Question Number 68962    Answers: 0   Comments: 4

Question Number 68961    Answers: 1   Comments: 0

Question Number 68960    Answers: 0   Comments: 3

Question Number 68956    Answers: 0   Comments: 0

Question Number 68952    Answers: 1   Comments: 0

Question Number 68947    Answers: 0   Comments: 0

please utilise cette fonction to show that N∗N is denombrable f:N⊛N→N (x,y)∣→(((x+y)(x+y+1))/2)+y montrer que f est bijective Please help

$$\mathrm{please} \\ $$$$\mathrm{utilise}\:\mathrm{cette}\:\mathrm{fonction}\:\mathrm{to}\: \\ $$$$\mathrm{sh}\boldsymbol{\mathrm{ow}}\:\boldsymbol{\mathrm{that}}\:\boldsymbol{\mathrm{N}}\ast\boldsymbol{\mathrm{N}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{denombrable}} \\ $$$$\:\mathrm{f}:\boldsymbol{\mathrm{N}}\circledast\boldsymbol{\mathrm{N}}\rightarrow\boldsymbol{\mathrm{N}} \\ $$$$\:\:\:\:\left(\mathrm{x},\mathrm{y}\right)\shortmid\rightarrow\frac{\left(\mathrm{x}+\mathrm{y}\right)\left(\mathrm{x}+\mathrm{y}+\mathrm{1}\right)}{\mathrm{2}}+\mathrm{y} \\ $$$$\mathrm{montrer}\:\mathrm{que}\:\mathrm{f}\:\mathrm{est}\:\mathrm{bijective} \\ $$$$\:\:\:\boldsymbol{\mathrm{P}}\mathrm{lease}\:\mathrm{help} \\ $$$$ \\ $$$$\:\:\:\:\:\: \\ $$

Question Number 68946    Answers: 0   Comments: 1

Question Number 68941    Answers: 3   Comments: 3

Question Number 68935    Answers: 2   Comments: 0

Find all values for x: (x^2 −7x+11)^(x^2 −13x+42) =1 (Easy)

$${Find}\:{all}\:{values}\:{for}\:\boldsymbol{{x}}: \\ $$$$\left({x}^{\mathrm{2}} −\mathrm{7}{x}+\mathrm{11}\right)^{{x}^{\mathrm{2}} −\mathrm{13}{x}+\mathrm{42}} =\mathrm{1} \\ $$$$\left({Easy}\right) \\ $$

Question Number 68930    Answers: 0   Comments: 3

In the figure we have 7 circles having the same radius. Determine the ratio between the perimeter of one of the circle and the perimeter of the gray region.

$$\mathrm{In}\:\mathrm{the}\:\mathrm{figure}\:\mathrm{we}\:\mathrm{have}\:\mathrm{7}\:\mathrm{circles}\:\mathrm{having} \\ $$$$\mathrm{the}\:\mathrm{same}\:\mathrm{radius}.\:\mathrm{Determine}\:\mathrm{the}\:\mathrm{ratio} \\ $$$$\mathrm{between}\:\mathrm{the}\:\mathrm{perimeter}\:\mathrm{of}\:\mathrm{one}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{circle}\:\mathrm{and}\:\mathrm{the}\:\mathrm{perimeter}\:\mathrm{of}\:\mathrm{the}\:\mathrm{gray}\:\mathrm{region}. \\ $$

Question Number 68926    Answers: 0   Comments: 0

Question Number 68925    Answers: 0   Comments: 2

Question Number 68924    Answers: 0   Comments: 0

Question Number 68923    Answers: 0   Comments: 2

Question Number 68912    Answers: 1   Comments: 0

Question Number 68899    Answers: 0   Comments: 9

solve for x and y the equation 2lnx −lny =ln(5x−6y)

$${solve}\:{for}\:{x}\:{and}\:{y}\:{the}\:{equation} \\ $$$$\:\mathrm{2}{lnx}\:−{lny}\:={ln}\left(\mathrm{5}{x}−\mathrm{6}{y}\right) \\ $$

Question Number 68898    Answers: 0   Comments: 7

solve for x the equation log_x e^(2x) = eln x −e

$${solve}\:{for}\:{x}\:{the}\:{equation} \\ $$$$\:\:{log}_{{x}} {e}^{\mathrm{2}{x}} \:=\:{eln}\:{x}\:−{e} \\ $$

Question Number 68885    Answers: 0   Comments: 2

if f(x)=((∣x∣)/x) g(x)=x^2 −1 find lim_(x→1) f(g(x))

$${if}\: \\ $$$${f}\left({x}\right)=\frac{\mid{x}\mid}{{x}} \\ $$$${g}\left({x}\right)={x}^{\mathrm{2}} −\mathrm{1} \\ $$$$ \\ $$$${find}\: \\ $$$$ \\ $$$$\underset{{x}\rightarrow\mathrm{1}} {{lim}}\:\:{f}\left({g}\left({x}\right)\right) \\ $$

Question Number 68879    Answers: 0   Comments: 2

let I =∫_0 ^1 (x/(ln(1+x)))dx determine a approximate value of I

$${let}\:{I}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{x}}{{ln}\left(\mathrm{1}+{x}\right)}{dx}\:\:{determine}\:{a}\:{approximate}\:{value}\:{of}\:{I} \\ $$

  Pg 1410      Pg 1411      Pg 1412      Pg 1413      Pg 1414      Pg 1415      Pg 1416      Pg 1417      Pg 1418      Pg 1419   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com