Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1414

Question Number 63261    Answers: 0   Comments: 6

∫x tan(x) dx

$$\int{x}\:{tan}\left({x}\right)\:{dx} \\ $$

Question Number 63247    Answers: 0   Comments: 1

Prove that (√(abc)) + (√((1−a)(1−b)(1−c))) ≤ 1 for 0 ≤ a,b,c ≤ 1

$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\sqrt{{abc}}\:+\:\sqrt{\left(\mathrm{1}−{a}\right)\left(\mathrm{1}−{b}\right)\left(\mathrm{1}−{c}\right)}\:\leqslant\:\mathrm{1} \\ $$$$\mathrm{for}\:\mathrm{0}\:\leqslant\:{a},{b},{c}\:\leqslant\:\mathrm{1} \\ $$

Question Number 63246    Answers: 0   Comments: 2

Arrange these digits: 1 1 2 2 3 3 4 4 So that the 1′s are four digit apart So that the 2′s are three digit apart So that the 3′s are two digit apart So that the 4′s are one digit apart

$$\mathrm{Arrange}\:\mathrm{these}\:\mathrm{digits}:\:\:\:\:\:\:\mathrm{1}\:\:\mathrm{1}\:\:\mathrm{2}\:\:\mathrm{2}\:\:\mathrm{3}\:\:\mathrm{3}\:\:\mathrm{4}\:\:\mathrm{4} \\ $$$$\:\:\:\:\:\:\mathrm{So}\:\mathrm{that}\:\mathrm{the}\:\mathrm{1}'\mathrm{s}\:\mathrm{are}\:\mathrm{four}\:\mathrm{digit}\:\mathrm{apart} \\ $$$$\:\:\:\:\:\:\mathrm{So}\:\mathrm{that}\:\mathrm{the}\:\mathrm{2}'\mathrm{s}\:\mathrm{are}\:\mathrm{three}\:\mathrm{digit}\:\mathrm{apart} \\ $$$$\:\:\:\:\:\:\mathrm{So}\:\mathrm{that}\:\mathrm{the}\:\mathrm{3}'\mathrm{s}\:\mathrm{are}\:\mathrm{two}\:\mathrm{digit}\:\mathrm{apart} \\ $$$$\:\:\:\:\:\:\mathrm{So}\:\mathrm{that}\:\mathrm{the}\:\mathrm{4}'\mathrm{s}\:\mathrm{are}\:\mathrm{one}\:\mathrm{digit}\:\mathrm{apart} \\ $$$$ \\ $$

Question Number 63256    Answers: 0   Comments: 3

Question Number 63233    Answers: 0   Comments: 4

Question Number 63232    Answers: 0   Comments: 2

let B(x,y) =∫_0 ^1 (1−t)^(x−1) t^(y−1) dt 1) study the convergence of B(x,y) 1) prove that B(x,y)=B(y,x) prove that B(x,y) =∫_0 ^∞ (t^(x−1) /((1+t)^(x+y) )) dt 2) prove that B(x,y) =((Γ(x).Γ(y))/(Γ(x+y))) 3) prove that Γ(x).Γ(1−x) =(π/(sin(πx))) for allx ∈]0,1[

$${let}\:{B}\left({x},{y}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{t}\right)^{{x}−\mathrm{1}} {t}^{{y}−\mathrm{1}} \:{dt} \\ $$$$\left.\mathrm{1}\right)\:{study}\:{the}\:{convergence}\:{of}\:{B}\left({x},{y}\right) \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:{B}\left({x},{y}\right)={B}\left({y},{x}\right) \\ $$$${prove}\:{that}\:{B}\left({x},{y}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}^{{x}−\mathrm{1}} }{\left(\mathrm{1}+{t}\right)^{{x}+{y}} }\:{dt} \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:{B}\left({x},{y}\right)\:=\frac{\Gamma\left({x}\right).\Gamma\left({y}\right)}{\Gamma\left({x}+{y}\right)} \\ $$$$\left.\mathrm{3}\left.\right)\:{prove}\:{that}\:\Gamma\left({x}\right).\Gamma\left(\mathrm{1}−{x}\right)\:=\frac{\pi}{{sin}\left(\pi{x}\right)}\:\:\:{for}\:{allx}\:\in\right]\mathrm{0},\mathrm{1}\left[\right. \\ $$

Question Number 63225    Answers: 0   Comments: 0

Question Number 63645    Answers: 0   Comments: 4

n integr natural prove that 5 divide n^5 −n

$${n}\:{integr}\:{natural}\:{prove}\:{that}\:\mathrm{5}\:{divide}\:{n}^{\mathrm{5}} −{n} \\ $$

Question Number 63251    Answers: 0   Comments: 0

∫_( 0) ^( (π/2)) sin^(−1) (m cosθ) dθ

$$\int_{\:\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \:\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{m}\:\mathrm{cos}\theta\right)\:\mathrm{d}\theta \\ $$

Question Number 63215    Answers: 0   Comments: 1

calculate lim_(n→+∞) {n (1+(1/n))^n −en}

$${calculate}\:{lim}_{{n}\rightarrow+\infty} \left\{{n}\:\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)^{{n}} −{en}\right\} \\ $$

Question Number 63214    Answers: 0   Comments: 1

calculate ∫_0 ^∞ x e^(−(x^2 /a^2 )) sin(bx)dx with a>0 and b>0

$${calculate}\:\:\int_{\mathrm{0}} ^{\infty} \:{x}\:{e}^{−\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }} \:\:{sin}\left({bx}\right){dx}\:\:{with}\:\:{a}>\mathrm{0}\:{and}\:{b}>\mathrm{0} \\ $$

Question Number 63267    Answers: 0   Comments: 3

lim_(n→∞) (((n^3 + 1)/(n^3 − 1)))^(2n − n^3 )

$$\:\:\:\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\:\left(\frac{\mathrm{n}^{\mathrm{3}} \:+\:\mathrm{1}}{\mathrm{n}^{\mathrm{3}} \:−\:\mathrm{1}}\right)^{\mathrm{2n}\:−\:\mathrm{n}^{\mathrm{3}} } \\ $$

Question Number 63206    Answers: 1   Comments: 1

Question Number 63203    Answers: 0   Comments: 5

Question Number 63268    Answers: 0   Comments: 0

Question Number 63194    Answers: 1   Comments: 0

Question Number 63190    Answers: 0   Comments: 3

Test its convergence: Σ_(n = 1) ^∞ (1/(n^3 sin^2 n))

$$\mathrm{Test}\:\mathrm{its}\:\mathrm{convergence}:\:\:\:\:\:\:\:\:\underset{\mathrm{n}\:=\:\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{3}} \:\mathrm{sin}^{\mathrm{2}} \mathrm{n}} \\ $$

Question Number 63292    Answers: 0   Comments: 4

∫_0 ^1 ∫_0 ^1 (dy/(1+y(x^2 −x))) dx

$$\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{dy}}{\mathrm{1}+{y}\left({x}^{\mathrm{2}} −{x}\right)}\:{dx} \\ $$

Question Number 63291    Answers: 0   Comments: 3

find some of all real x such that ((4x^2 +15x+17)/(x^2 +4x+12)) = ((5x^2 +16x+18)/(2x^2 +5x+13))

$${find}\:{some}\:{of}\:{all}\:{real}\:{x}\:{such}\:{that} \\ $$$$ \\ $$$$\frac{\mathrm{4}{x}^{\mathrm{2}} +\mathrm{15}{x}+\mathrm{17}}{{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{12}}\:=\:\frac{\mathrm{5}{x}^{\mathrm{2}} +\mathrm{16}{x}+\mathrm{18}}{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{5}{x}+\mathrm{13}} \\ $$

Question Number 63290    Answers: 0   Comments: 0

Question Number 63289    Answers: 0   Comments: 0

Question Number 63288    Answers: 1   Comments: 0

Question Number 63218    Answers: 0   Comments: 8

Q.63108 (A check) eq. of ellipse (x^2 /4)+y^2 =1 Inscribed equilateral △ABC of side s=((16(√6))/(√(365))) Do these points satisfy for A, B, C ? A((4/(√(365))), ((19)/(√(365)))) ; B[−(((20+8(√3)))/(√(365))), ((8(√3)−5)/(√(365)))] C[−(((20−8(√3)))/(√(365))) , −(((5+8(√3)))/(√(365)))] θ=45°

$${Q}.\mathrm{63108}\:\:\:\left({A}\:{check}\right) \\ $$$${eq}.\:{of}\:{ellipse} \\ $$$$\frac{{x}^{\mathrm{2}} }{\mathrm{4}}+{y}^{\mathrm{2}} =\mathrm{1} \\ $$$${Inscribed}\:{equilateral}\:\bigtriangleup{ABC} \\ $$$${of}\:{side}\:\boldsymbol{{s}}=\frac{\mathrm{16}\sqrt{\mathrm{6}}}{\sqrt{\mathrm{365}}} \\ $$$${Do}\:{these}\:{points}\:{satisfy}\:{for} \\ $$$${A},\:{B},\:{C}\:? \\ $$$${A}\left(\frac{\mathrm{4}}{\sqrt{\mathrm{365}}},\:\frac{\mathrm{19}}{\sqrt{\mathrm{365}}}\right)\:\:\:;\:\: \\ $$$${B}\left[−\frac{\left(\mathrm{20}+\mathrm{8}\sqrt{\mathrm{3}}\right)}{\sqrt{\mathrm{365}}},\:\frac{\mathrm{8}\sqrt{\mathrm{3}}−\mathrm{5}}{\sqrt{\mathrm{365}}}\right] \\ $$$${C}\left[−\frac{\left(\mathrm{20}−\mathrm{8}\sqrt{\mathrm{3}}\right)}{\sqrt{\mathrm{365}}}\:,\:−\frac{\left(\mathrm{5}+\mathrm{8}\sqrt{\mathrm{3}}\right)}{\sqrt{\mathrm{365}}}\right] \\ $$$$\:\theta=\mathrm{45}° \\ $$

Question Number 63178    Answers: 2   Comments: 1

Question Number 63176    Answers: 1   Comments: 1

Question Number 63651    Answers: 0   Comments: 0

let S_n (x)=Σ_(k=0) ^n e^(−k) sin(k^2 x) 1) determine 2 sequence U_n (x) and V_n (x) wich verify U_n ≤ S_n ≤ V_n 2) let S =lim_(n→+∞) S(x) study the convergence of S.

$${let}\:{S}_{{n}} \left({x}\right)=\sum_{{k}=\mathrm{0}} ^{{n}} \:{e}^{−{k}} {sin}\left({k}^{\mathrm{2}} {x}\right) \\ $$$$\left.\mathrm{1}\right)\:{determine}\:\mathrm{2}\:{sequence}\:\:{U}_{{n}} \left({x}\right)\:{and}\:{V}_{{n}} \left({x}\right)\:{wich}\:{verify}\:{U}_{{n}} \leqslant\:{S}_{{n}} \leqslant\:{V}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{let}\:\:{S}\:={lim}_{{n}\rightarrow+\infty} \:{S}\left({x}\right)\:\:{study}\:{the}\:{convergence}\:{of}\:{S}. \\ $$

  Pg 1409      Pg 1410      Pg 1411      Pg 1412      Pg 1413      Pg 1414      Pg 1415      Pg 1416      Pg 1417      Pg 1418   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com