Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1413

Question Number 64541    Answers: 1   Comments: 0

lol....QUESTION OF THE DAY SHOW FULL WORKINGS ∫x((((1−x^2 )Ln(1+x^2 )+(1+x^2 )−(1−x^2 )Ln(1−x^2 ))/((1−x^4 )(1+x^2 ))))e^((x^2 −1)/(x^2 +1)) dx

$${lol}....{QUESTION}\:{OF}\:\:{THE}\:{DAY} \\ $$$$ \\ $$$${SHOW}\:{FULL}\:{WORKINGS} \\ $$$$ \\ $$$$\int{x}\left(\frac{\left(\mathrm{1}−{x}^{\mathrm{2}} \right){Ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)+\left(\mathrm{1}+{x}^{\mathrm{2}} \right)−\left(\mathrm{1}−{x}^{\mathrm{2}} \right){Ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)}{\left(\mathrm{1}−{x}^{\mathrm{4}} \right)\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}\right){e}^{\frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{1}}} {dx} \\ $$

Question Number 64539    Answers: 1   Comments: 9

lim_(xat 0) [cos^2 (4x)]/x^2 −lim_(x at 0) [cos^3 (6x)]/x^2

$${lim}_{{xat}\:\mathrm{0}} \left[{cos}^{\mathrm{2}} \left(\mathrm{4}{x}\right)\right]/{x}^{\mathrm{2}} \:\:−{lim}_{{x}\:{at}\:\mathrm{0}} \left[{cos}^{\mathrm{3}} \left(\mathrm{6}{x}\right)\right]/{x}^{\mathrm{2}} \\ $$

Question Number 64534    Answers: 0   Comments: 1

evalate y= 3e^(4x) − (5/(3e^(3x ) )) + 4lin2x at points (a) (0 4) and (1 8).

$${evalate}\:{y}=\:\mathrm{3}{e}^{\mathrm{4}{x}} \:−\:\frac{\mathrm{5}}{\mathrm{3}{e}^{\mathrm{3}{x}\:} }\:+\:\mathrm{4}{lin}\mathrm{2}{x}\:{at}\:\: \\ $$$${points}\:\left({a}\right)\:\left(\mathrm{0}\:\mathrm{4}\right)\:{and}\:\left(\mathrm{1}\:\mathrm{8}\right). \\ $$

Question Number 64533    Answers: 1   Comments: 0

Find all solutions of x real numbers such that 2x^2 − 7x + 6 = 15 ⌊(1/x)⌋⌊x⌋

$${Find}\:\:{all}\:\:{solutions}\:\:{of}\:\:{x}\:\:{real}\:\:{numbers}\:\:{such}\:\:{that} \\ $$$$\mathrm{2}{x}^{\mathrm{2}} \:−\:\mathrm{7}{x}\:+\:\mathrm{6}\:\:=\:\:\mathrm{15}\:\lfloor\frac{\mathrm{1}}{{x}}\rfloor\lfloor{x}\rfloor \\ $$

Question Number 64529    Answers: 0   Comments: 0

calculate ∫_1 ^2 (dx/(√x)) by Rieman sum.

$${calculate}\:\:\int_{\mathrm{1}} ^{\mathrm{2}} \:\frac{{dx}}{\sqrt{{x}}}\:\:\:{by}\:{Rieman}\:{sum}. \\ $$

Question Number 64528    Answers: 0   Comments: 1

find ∫_0 ^1 x^(−x) dx study first the convergence.

$${find}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{−{x}} {dx}\:\:\:{study}\:{first}\:{the}\:{convergence}. \\ $$

Question Number 64525    Answers: 0   Comments: 1

study the convergence of Σ U_n with U_n =∫_0 ^∞ ((cos(nx))/(x^2 +n^2 ))dx (n≥1)

$${study}\:{the}\:{convergence}\:{of}\:\Sigma\:{U}_{{n}} \:\:\:{with} \\ $$$${U}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{cos}\left({nx}\right)}{{x}^{\mathrm{2}} \:+{n}^{\mathrm{2}} }{dx}\:\:\:\left({n}\geqslant\mathrm{1}\right) \\ $$

Question Number 64522    Answers: 1   Comments: 0

In a hospital, Dr Steve has worked more night shifts than Dr Gregg who has worked five night shifts. Dr Okon has worked 15 night shifts more than Dr Steve and Dr Gregg combined. Dr. Uche has worked eight night shifts less than Dr Steve.How many night shifts has Dr. Steve worked? a)10 b)9 c)8 d)7

$${In}\:{a}\:{hospital},\:{Dr}\:{Steve}\:{has}\:{worked} \\ $$$${more}\:{night}\:{shifts}\:{than}\:{Dr}\:{Gregg}\:{who} \\ $$$${has}\:{worked}\:{five}\:{night}\:{shifts}.\:{Dr}\:{Okon} \\ $$$${has}\:{worked}\:\mathrm{15}\:{night}\:{shifts}\:{more}\:{than} \\ $$$${Dr}\:{Steve}\:{and}\:{Dr}\:{Gregg}\:{combined}. \\ $$$${Dr}.\:{Uche}\:{has}\:{worked}\:{eight}\:{night}\:{shifts} \\ $$$${less}\:{than}\:{Dr}\:{Steve}.{How}\:{many}\:{night} \\ $$$${shifts}\:{has}\:{Dr}.\:{Steve}\:{worked}? \\ $$$$\left.{a}\left.\right)\left.\mathrm{1}\left.\mathrm{0}\:{b}\right)\mathrm{9}\:{c}\right)\mathrm{8}\:{d}\right)\mathrm{7} \\ $$

Question Number 64519    Answers: 1   Comments: 0

a,b,c is a geometric progression such that a+b+c=26 a^2 +b^2 +c^2 =364 find a,b,c

$${a},{b},{c}\:{is}\:{a}\:{geometric}\:{progression}\:{such} \\ $$$${that} \\ $$$${a}+{b}+{c}=\mathrm{26} \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} =\mathrm{364} \\ $$$$ \\ $$$${find}\:{a},{b},{c} \\ $$

Question Number 64516    Answers: 2   Comments: 5

Question Number 64514    Answers: 0   Comments: 2

y=arc tan[(√((1−cosx)/(1+cosx)))] y^ =?

$${y}={arc}\:{tan}\left[\sqrt{\frac{\mathrm{1}−{cosx}}{\mathrm{1}+{cosx}}}\right] \\ $$$${y}^{} =? \\ $$

Question Number 64498    Answers: 0   Comments: 0

please, anyone help me to solve this i. Σ_(k=1) ^n cos(((k^2 π)/n)) ii. Σ_(k=1) ^(n) sin(((k^2 π)/n)) thank you.

$$\mathrm{please},\:\mathrm{anyone}\:\mathrm{help}\:\mathrm{me}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{this} \\ $$$$\mathrm{i}.\:\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\mathrm{cos}\left(\frac{\mathrm{k}^{\mathrm{2}} \pi}{\mathrm{n}}\right) \\ $$$$\mathrm{ii}.\:\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\Sigma}}\mathrm{sin}\left(\frac{\mathrm{k}^{\mathrm{2}} \pi}{\mathrm{n}}\right) \\ $$$$\mathrm{thank}\:\mathrm{you}. \\ $$

Question Number 64508    Answers: 2   Comments: 1

factorize (x+1)(x+3)(x+5)(x+7)+16

$$\mathrm{factorize}\:\left(\mathrm{x}+\mathrm{1}\right)\left(\mathrm{x}+\mathrm{3}\right)\left(\mathrm{x}+\mathrm{5}\right)\left(\mathrm{x}+\mathrm{7}\right)+\mathrm{16} \\ $$

Question Number 64478    Answers: 1   Comments: 2

Question Number 64477    Answers: 0   Comments: 1

pls i need it urgently... am stuck workings please (1) ∫Ln(1−Lnx)dx (2) ∫(1/(Lnx))dx (3)∫ Ln(−2Lnx)dx God will honour u 4 ur replies

$${pls}\:\:{i}\:{need}\:{it}\:{urgently}...\:{am}\:{stuck} \\ $$$${workings}\:{please} \\ $$$$\left(\mathrm{1}\right)\:\:\int{Ln}\left(\mathrm{1}−{Lnx}\right){dx} \\ $$$$ \\ $$$$\left(\mathrm{2}\right)\:\:\int\frac{\mathrm{1}}{{Lnx}}{dx} \\ $$$$ \\ $$$$\left(\mathrm{3}\right)\int\:{Ln}\left(−\mathrm{2}{Lnx}\right){dx} \\ $$$$ \\ $$$${God}\:{will}\:{honour}\:{u}\:\mathrm{4}\:{ur}\:{replies} \\ $$

Question Number 64475    Answers: 2   Comments: 6

solve the equation sin(x)+sin(2x)+sin(3x)=cos(x)+cos(2x)+cos(3x)

$${solve}\:{the}\:{equation} \\ $$$${sin}\left({x}\right)+{sin}\left(\mathrm{2}{x}\right)+{sin}\left(\mathrm{3}{x}\right)={cos}\left({x}\right)+{cos}\left(\mathrm{2}{x}\right)+{cos}\left(\mathrm{3}{x}\right) \\ $$

Question Number 64471    Answers: 1   Comments: 0

∫((tanx))^(1/4) dx

$$\int\sqrt[{\mathrm{4}}]{{tanx}}{dx} \\ $$

Question Number 64469    Answers: 1   Comments: 0

Question Number 64465    Answers: 0   Comments: 0

vy

$${vy} \\ $$

Question Number 64463    Answers: 0   Comments: 1

∫(√(sec(x))) dx

$$\int\sqrt{{sec}\left({x}\right)}\:{dx} \\ $$

Question Number 64459    Answers: 0   Comments: 2

Question Number 64452    Answers: 1   Comments: 5

Question Number 64456    Answers: 0   Comments: 1

Question Number 64448    Answers: 1   Comments: 1

calculate lim_(x→π) ∫_(π/2) ^x (dx/(1+sinx−cosx))

$${calculate}\:{lim}_{{x}\rightarrow\pi} \:\:\int_{\frac{\pi}{\mathrm{2}}} ^{{x}} \:\:\:\frac{{dx}}{\mathrm{1}+{sinx}−{cosx}} \\ $$

Question Number 64447    Answers: 1   Comments: 0

Question Number 64445    Answers: 0   Comments: 0

calculate W_n =Σ_(1≤i≤j≤n) i×j

$${calculate}\:\:{W}_{{n}} =\sum_{\mathrm{1}\leqslant{i}\leqslant{j}\leqslant{n}} \:{i}×{j} \\ $$

  Pg 1408      Pg 1409      Pg 1410      Pg 1411      Pg 1412      Pg 1413      Pg 1414      Pg 1415      Pg 1416      Pg 1417   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com