Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1412

Question Number 67379    Answers: 0   Comments: 2

let f(x) =e^(−∣x∣) 2π periodic even developp f at fourier serie

$${let}\:\:{f}\left({x}\right)\:={e}^{−\mid{x}\mid} \:\:\:\:\:\:\mathrm{2}\pi\:\:{periodic}\:{even} \\ $$$${developp}\:{f}\:{at}\:{fourier}\:{serie} \\ $$

Question Number 67378    Answers: 0   Comments: 1

let f(x) =x^3 ,2π periodic odd developp f at fourier serie

$${let}\:{f}\left({x}\right)\:={x}^{\mathrm{3}} \:\:\:\:\:\:,\mathrm{2}\pi\:{periodic}\:{odd} \\ $$$${developp}\:{f}\:{at}\:{fourier}\:{serie}\: \\ $$

Question Number 67374    Answers: 0   Comments: 3

find ∫ (1+(1/x^2 ))arctan(1−(1/x))dx

$${find}\:\int\:\left(\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right){arctan}\left(\mathrm{1}−\frac{\mathrm{1}}{{x}}\right){dx} \\ $$

Question Number 67371    Answers: 1   Comments: 0

Question Number 67373    Answers: 1   Comments: 4

simplify S_n (x) =Σ_(k=0) ^n C_n ^k cos^4 (πkx) 2) calculate I_n =∫_0 ^(1/3) S_n (x)dx

$${simplify}\:\:\:{S}_{{n}} \left({x}\right)\:=\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:{cos}^{\mathrm{4}} \left(\pi{kx}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{I}_{{n}} =\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{3}}} \:{S}_{{n}} \left({x}\right){dx} \\ $$

Question Number 67359    Answers: 1   Comments: 1

∫siny/y dy

$$\int{siny}/{y}\:\:{dy} \\ $$

Question Number 67350    Answers: 1   Comments: 1

Question Number 67349    Answers: 1   Comments: 0

Solve for y(x) xy′ = y + 2x^3 sin^2 ((y/x))

$$\mathrm{Solve}\:\mathrm{for}\:{y}\left({x}\right) \\ $$$${xy}'\:=\:{y}\:+\:\mathrm{2}{x}^{\mathrm{3}} \mathrm{sin}^{\mathrm{2}} \left(\frac{{y}}{{x}}\right) \\ $$

Question Number 67345    Answers: 1   Comments: 0

3sinx+5cosx=5 then prove that 5sinx−3cox= +3

$$\mathrm{3}{sinx}+\mathrm{5}{cosx}=\mathrm{5}\:{then}\:{prove}\:{that}\: \\ $$$$\mathrm{5}{sinx}−\mathrm{3}{cox}=\:+\mathrm{3} \\ $$

Question Number 67342    Answers: 0   Comments: 1

find the value of ∫_(−∞) ^∞ ((sin(2x^2 ))/((x^2 −x +3)^3 ))dx

$${find}\:{the}\:{value}\:{of}\:\int_{−\infty} ^{\infty} \:\:\:\frac{{sin}\left(\mathrm{2}{x}^{\mathrm{2}} \right)}{\left({x}^{\mathrm{2}} −{x}\:+\mathrm{3}\right)^{\mathrm{3}} }{dx} \\ $$

Question Number 67310    Answers: 1   Comments: 2

calculate ∫_(−∞) ^(+∞) (dx/(x^4 +x^2 +1))

$${calculate}\:\int_{−\infty} ^{+\infty} \:\:\frac{{dx}}{{x}^{\mathrm{4}} \:+{x}^{\mathrm{2}} \:+\mathrm{1}} \\ $$

Question Number 67307    Answers: 1   Comments: 1

Question Number 67299    Answers: 2   Comments: 5

G(x)= (x+1)(x+3)Q(x) + px +q a) Given that G(x) leaves a remainder of 8 and −24 when divided by (x+1) and (x+3) respectively,find the remainder when G(x) is divided by (x+1)(x+3). b) Given that x+2 is a factor of G(x) and that the graph of G(x) passes through the point with coordinates (0,6) find G(x)

$${G}\left({x}\right)=\:\left({x}+\mathrm{1}\right)\left({x}+\mathrm{3}\right){Q}\left({x}\right)\:+\:{px}\:+{q} \\ $$$$\left.{a}\right)\:{Given}\:{that}\:{G}\left({x}\right)\:{leaves}\:{a}\:{remainder}\:{of}\:\mathrm{8}\:{and}\:−\mathrm{24}\:{when}\:{divided}\:{by}\:\left({x}+\mathrm{1}\right)\:{and}\: \\ $$$$\left({x}+\mathrm{3}\right)\:{respectively},{find}\:{the}\:{remainder}\:{when}\:{G}\left({x}\right)\:{is}\:{divided}\:{by}\:\left({x}+\mathrm{1}\right)\left({x}+\mathrm{3}\right). \\ $$$$\left.{b}\right)\:\:{Given}\:{that}\:{x}+\mathrm{2}\:{is}\:{a}\:{factor}\:{of}\:{G}\left({x}\right)\:{and}\:{that}\:{the}\:{graph}\:{of}\:{G}\left({x}\right)\:{passes}\:{through} \\ $$$${the}\:{point}\:{with}\:{coordinates}\:\left(\mathrm{0},\mathrm{6}\right)\:{find}\:{G}\left({x}\right) \\ $$

Question Number 67333    Answers: 0   Comments: 0

evaluate Σ_(n=0) ^(+∞) (1/((1+8n)^2 ))

$${evaluate}\:\underset{{n}=\mathrm{0}} {\overset{+\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{1}+\mathrm{8}{n}\right)^{\mathrm{2}} } \\ $$

Question Number 67281    Answers: 1   Comments: 6

Question Number 67337    Answers: 1   Comments: 0

m(p+1)=a ((q(p+1))/(r+1))=b & ((p(p+1))/(q+1))=c and ((r(p+1))/(m+1))=d find either of p,q,r,m in terms of a,b,c,d.

$${m}\left({p}+\mathrm{1}\right)={a} \\ $$$$\frac{{q}\left({p}+\mathrm{1}\right)}{{r}+\mathrm{1}}={b}\:\:\&\:\:\frac{{p}\left({p}+\mathrm{1}\right)}{{q}+\mathrm{1}}={c} \\ $$$${and}\:\:\frac{{r}\left({p}+\mathrm{1}\right)}{{m}+\mathrm{1}}={d} \\ $$$${find}\:{either}\:{of}\:{p},{q},{r},{m}\:{in}\:{terms}\:{of} \\ $$$${a},{b},{c},{d}. \\ $$

Question Number 67336    Answers: 0   Comments: 3

If (dy/dx) = e^(−t) (dy/dt) , find (d^2 y/dx^2 )

$$\mathrm{If}\:\:\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\mathrm{e}^{−\mathrm{t}} \:\:\frac{\mathrm{dy}}{\mathrm{dt}}\:\:,\:\:\:\:\:\:\mathrm{find}\:\:\:\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} } \\ $$

Question Number 67254    Answers: 1   Comments: 10

Question Number 67246    Answers: 2   Comments: 4

Integrate: 1) ∫_3 ^( ∞) ((1/x dx)/(ln(x)(√(ln^2 x−1)))) 2) ∫_1 ^∞ ((e^x dx)/(1+e^(2x) )) 3) ∫_1 ^∞ ((2^x dx)/(x+1)) 4) ∫_2 ^∞ ((√x)/(ln(x)))dx

$${Integrate}: \\ $$$$\left.\mathrm{1}\right)\:\underset{\mathrm{3}} {\overset{\:\infty} {\int}}\:\frac{\mathrm{1}/{x}\:{dx}}{{ln}\left({x}\right)\sqrt{{ln}^{\mathrm{2}} {x}−\mathrm{1}}} \\ $$$$\left.\mathrm{2}\right)\:\underset{\mathrm{1}} {\overset{\infty} {\int}}\frac{{e}^{{x}} {dx}}{\mathrm{1}+{e}^{\mathrm{2}{x}} } \\ $$$$\left.\mathrm{3}\right)\:\underset{\mathrm{1}} {\overset{\infty} {\int}}\:\frac{\mathrm{2}^{{x}} {dx}}{{x}+\mathrm{1}} \\ $$$$\left.\mathrm{4}\right)\:\underset{\mathrm{2}} {\overset{\infty} {\int}}\:\frac{\sqrt{{x}}}{{ln}\left({x}\right)}{dx} \\ $$

Question Number 67244    Answers: 0   Comments: 7

Which of the series converge and which diverge? Check by the limit comparison test. 1) Σ_(n=2) ^∞ ((1+n ln(n))/(n^2 +5)) 2) Σ_(n=1) ^∞ ((ln(n))/n^(3/2) ) 3) Σ_(n=3) ^∞ (1/(ln(lnn))) 4) Σ_(n=1) ^∞ (1/(n (n)^(1/n) )) ??

$${Which}\:{of}\:{the}\:{series}\:{converge}\:{and}\: \\ $$$${which}\:{diverge}?\:{Check}\:{by}\:{the}\:{limit} \\ $$$${comparison}\:{test}. \\ $$$$\left.\mathrm{1}\right)\:\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}+{n}\:{ln}\left({n}\right)}{{n}^{\mathrm{2}} +\mathrm{5}} \\ $$$$\left.\mathrm{2}\right)\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{{ln}\left({n}\right)}{{n}^{\frac{\mathrm{3}}{\mathrm{2}}} } \\ $$$$\left.\mathrm{3}\right)\:\underset{{n}=\mathrm{3}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{{ln}\left({lnn}\right)} \\ $$$$\left.\mathrm{4}\right)\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{{n}\:\left({n}\right)^{\frac{\mathrm{1}}{{n}}} }\:\: \\ $$$$?? \\ $$

Question Number 67236    Answers: 1   Comments: 1

let T_n =cos(narccosx) 1) calculste T_0 ,T_1 ,T_2 2)find roots of T_n 3)decompose the fraction F =(1/T_n )

$${let}\:{T}_{{n}} ={cos}\left({narccosx}\right) \\ $$$$\left.\mathrm{1}\right)\:{calculste}\:{T}_{\mathrm{0}} ,{T}_{\mathrm{1}} ,{T}_{\mathrm{2}} \\ $$$$\left.\mathrm{2}\right){find}\:\:{roots}\:{of}\:{T}_{{n}} \\ $$$$\left.\mathrm{3}\right){decompose}\:\:{the}\:{fraction}\:{F}\:=\frac{\mathrm{1}}{{T}_{{n}} } \\ $$

Question Number 67235    Answers: 0   Comments: 1

find ∫_(−(π/3)) ^(π/3) x^2 {cosx−sinx}^3 dx

$${find}\:\:\int_{−\frac{\pi}{\mathrm{3}}} ^{\frac{\pi}{\mathrm{3}}} \:{x}^{\mathrm{2}} \left\{{cosx}−{sinx}\right\}^{\mathrm{3}} {dx} \\ $$

Question Number 67234    Answers: 2   Comments: 3

factorise p(x)=1+x+x^2 +x^3 +x^5 inside C[x] and R[x] calculate p(e^(i(π/5)) ) and p(cos((π/5)))

$${factorise}\:{p}\left({x}\right)=\mathrm{1}+{x}+{x}^{\mathrm{2}} \:+{x}^{\mathrm{3}} \:+{x}^{\mathrm{5}} \\ $$$${inside}\:{C}\left[{x}\right]\:{and}\:{R}\left[{x}\right] \\ $$$${calculate}\:{p}\left({e}^{{i}\frac{\pi}{\mathrm{5}}} \right)\:{and}\:{p}\left({cos}\left(\frac{\pi}{\mathrm{5}}\right)\right) \\ $$

Question Number 67233    Answers: 0   Comments: 1

calculate ∫_0 ^1 ((xdx)/(√(1+x^4 )))

$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{xdx}}{\sqrt{\mathrm{1}+{x}^{\mathrm{4}} }} \\ $$

Question Number 67232    Answers: 1   Comments: 1

calculate Σ_(n=1) ^∞ ((cos(n(π/3)))/n)

$${calculate}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{cos}\left({n}\frac{\pi}{\mathrm{3}}\right)}{{n}} \\ $$

Question Number 67231    Answers: 2   Comments: 0

find ∫x/x^5 −1) dx

$$\left.{find}\:\int{x}/{x}^{\mathrm{5}} −\mathrm{1}\right)\:{dx} \\ $$

  Pg 1407      Pg 1408      Pg 1409      Pg 1410      Pg 1411      Pg 1412      Pg 1413      Pg 1414      Pg 1415      Pg 1416   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com