Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1411

Question Number 67471    Answers: 0   Comments: 4

Evaluate:∫(√(x(√(x+1)))) dx

$$\boldsymbol{{Evaluate}}:\int\sqrt{{x}\sqrt{{x}+\mathrm{1}}}\:{dx} \\ $$

Question Number 67467    Answers: 0   Comments: 0

Find f(x)=∫_0 ^∞ (( tlnt)/((1+t^2 )^x )) dt

$$ \\ $$$$ \\ $$$${Find}\:\:\:\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\frac{\:{tlnt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{{x}} }\:{dt}\: \\ $$

Question Number 67466    Answers: 0   Comments: 0

let consider for all n≥1 the real (t)_n =t(t+1).....(t+n−1) Find L_n = ∫_0 ^∞ (((t)_1 )/((t)_(n+1) )) dt

$$ \\ $$$$ \\ $$$${let}\:{consider}\:\:\:{for}\:{all}\:{n}\geqslant\mathrm{1}\:{the}\:{real}\:\left({t}\right)_{{n}} \:={t}\left({t}+\mathrm{1}\right).....\left({t}+{n}−\mathrm{1}\right) \\ $$$${Find}\:\:\:{L}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\left({t}\right)_{\mathrm{1}} }{\left({t}\right)_{{n}+\mathrm{1}} }\:{dt} \\ $$

Question Number 67465    Answers: 0   Comments: 4

let consider a function g defined by g(a)=∫_0 ^1 (dx/(√((1−x)(1+ax)))) Give the defined Domain of g and simplify g.

$$ \\ $$$$ \\ $$$$\:\:{let}\:{consider}\:{a}\:{function}\:{g}\:{defined}\:{by}\:\:\:{g}\left({a}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{dx}}{\sqrt{\left(\mathrm{1}−{x}\right)\left(\mathrm{1}+{ax}\right)}}\:\: \\ $$$${Give}\:{the}\:{defined}\:{Domain}\:{of}\:{g}\:\:{and}\:{simplify}\:{g}. \\ $$

Question Number 67464    Answers: 1   Comments: 0

prove Cos(((2π)/7))+Cos(((4π)/7))+Cos(((8π)/7))=−(1/2)

$$\mathrm{prove}\:\:\:\mathrm{Cos}\left(\frac{\mathrm{2}\pi}{\mathrm{7}}\right)+\mathrm{Cos}\left(\frac{\mathrm{4}\pi}{\mathrm{7}}\right)+\mathrm{Cos}\left(\frac{\mathrm{8}\pi}{\mathrm{7}}\right)=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Question Number 67463    Answers: 1   Comments: 3

Find Find K=∫_0 ^(π/2) (√(tanθ)) dθ

$${Find} \\ $$$${Find}\:\:\:{K}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \sqrt{{tan}\theta}\:{d}\theta\: \\ $$

Question Number 67462    Answers: 0   Comments: 2

Calculate when a,b are positive reals f(a,b)= ∫_0 ^1 ((t^a −t^b )/(lnt)) dt

$$ \\ $$$$\:{Calculate}\:{when}\:{a},{b}\:{are}\:{positive}\:{reals}\:\:\:{f}\left({a},{b}\right)=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{t}^{{a}} −{t}^{{b}} }{{lnt}}\:{dt}\: \\ $$

Question Number 67461    Answers: 0   Comments: 0

find the value of Σ_(p=0) ^∞ (((−1)^p )/((2p+1)^2 ))

$${find}\:{the}\:{value}\:{of}\:\sum_{{p}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{p}} }{\left(\mathrm{2}{p}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$

Question Number 67454    Answers: 0   Comments: 2

Question Number 67481    Answers: 0   Comments: 2

p is a prime number such that (1+p)^p ≡2[7] find all k such that p≡k[42]

$${p}\:{is}\:{a}\:{prime}\:{number}\:{such}\:{that}\:\left(\mathrm{1}+{p}\right)^{{p}} \equiv\mathrm{2}\left[\mathrm{7}\right] \\ $$$${find}\:{all}\:{k}\:{such}\:{that}\:{p}\equiv{k}\left[\mathrm{42}\right] \\ $$

Question Number 67431    Answers: 1   Comments: 1

Question Number 67430    Answers: 2   Comments: 2

Question Number 67422    Answers: 1   Comments: 2

Question Number 68043    Answers: 1   Comments: 1

∫_(π/2) ^π e^(cosx) (√(1−e^(cosx) )) sinx dx

$$\int_{\pi/\mathrm{2}} ^{\pi} {e}^{{cosx}} \sqrt{\mathrm{1}−{e}^{{cosx}} }\:{sinx}\:{dx} \\ $$

Question Number 68728    Answers: 0   Comments: 0

dear scientist. i did some research on the energy obtained from the sun any other source by a liquid, of density ρ , velocity v, viscosity η and distance travelled d. i came out with the equation E = k ( vρ η^3 d^2 ) where k is a costant i still need to determine from more experiment. But please i want you guys great people to check if the equation is in confirmity and if atall it is correct so i can do some changes. thanks in advanced dear scientist.

$${dear}\:{scientist}. \\ $$$${i}\:{did}\:{some}\:{research}\:{on}\:{the}\:{energy}\:{obtained}\:{from}\:{the}\:{sun} \\ $$$${any}\:{other}\:{source}\:\:{by}\:{a}\:{liquid},\:{of}\:{density}\:\rho\:,\:{velocity}\:\:{v},\:\:{viscosity}\:\eta\:{and}\:{distance}\: \\ $$$${travelled}\:\:\:{d}. \\ $$$$ \\ $$$${i}\:{came}\:{out}\:{with}\:{the}\:{equation}\: \\ $$$$\:\:\:{E}\:=\:{k}\:\left(\:{v}\rho\:\eta^{\mathrm{3}} \:{d}^{\mathrm{2}} \right) \\ $$$${where}\:\:{k}\:{is}\:{a}\:{costant}\:{i}\:{still}\:{need}\:{to}\:{determine}\:{from}\:{more} \\ $$$${experiment}.\:{But}\:{please}\:{i}\:{want}\:{you}\:{guys}\:\:{great}\:{people}\:{to}\: \\ $$$${check}\:{if}\:{the}\:{equation}\:{is}\:{in}\:{confirmity}\:{and}\:{if}\:{atall}\:{it}\:{is}\:{correct} \\ $$$${so}\:{i}\:{can}\:{do}\:{some}\:{changes}. \\ $$$$ \\ $$$${thanks}\:{in}\:{advanced}\:\:{dear}\:{scientist}. \\ $$$$ \\ $$

Question Number 67413    Answers: 0   Comments: 0

Question Number 67398    Answers: 0   Comments: 2

solve the defrintion eguation (xp^2 −p+2x)=0 when p=dy/dx

$${solve}\:{the}\:{defrintion}\:{eguation}\:\left({xp}^{\mathrm{2}} −{p}+\mathrm{2}{x}\right)=\mathrm{0} \\ $$$${when}\:{p}={dy}/{dx} \\ $$

Question Number 67396    Answers: 0   Comments: 2

Question Number 67393    Answers: 0   Comments: 1

let y=(x−3)φ(2x+1) find dy/dx when x=2

$${let}\:{y}=\left({x}−\mathrm{3}\right)\phi\left(\mathrm{2}{x}+\mathrm{1}\right) \\ $$$${find}\:{dy}/{dx}\:{when}\:{x}=\mathrm{2} \\ $$

Question Number 67392    Answers: 0   Comments: 0

∫(6x

$$\int\left(\mathrm{6}{x}\right. \\ $$

Question Number 67386    Answers: 2   Comments: 8

Question Number 67385    Answers: 0   Comments: 0

find ∫ x((√((1−x^2 )/(1+x^2 ))))dx

$${find}\:\int\:{x}\left(\sqrt{\frac{\mathrm{1}−{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{2}} }}\right){dx} \\ $$

Question Number 67384    Answers: 0   Comments: 1

find Σ_(n=1) ^∞ ((cos(nx))/n^2 )

$${find}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{cos}\left({nx}\right)}{{n}^{\mathrm{2}} } \\ $$

Question Number 67382    Answers: 0   Comments: 3

calculate if there are maxims and minimus of the following function: y= { ((x^2 +1 if x⪇1)),((−x+4 if x≥1)) :}

$${calculate}\:{if}\:{there}\:{are}\:{maxims}\:{and}\:{minimus}\:{of} \\ $$$${the}\:{following}\:{function}: \\ $$$${y}=\begin{cases}{{x}^{\mathrm{2}} +\mathrm{1}\:{if}\:{x}\lneq\mathrm{1}}\\{−{x}+\mathrm{4}\:{if}\:{x}\geqslant\mathrm{1}}\end{cases} \\ $$

Question Number 67381    Answers: 0   Comments: 1

let f(x) =x^2 2π periodic even develop f at fourier serie

$${let}\:{f}\left({x}\right)\:={x}^{\mathrm{2}} \:\:\:\:\:\:\:\mathrm{2}\pi\:{periodic}\:\:{even}\:\:{develop}\:{f}\:{at}\:{fourier}\:{serie} \\ $$

Question Number 67380    Answers: 0   Comments: 1

solve the (d.e.) ( x^2 −x+1 )y^′ −(2x+3)y =x^2 e^x

$${solve}\:{the}\:\left({d}.{e}.\right)\:\:\:\:\left(\:{x}^{\mathrm{2}} −{x}+\mathrm{1}\:\:\:\:\:\:\right){y}^{'} −\left(\mathrm{2}{x}+\mathrm{3}\right){y}\:={x}^{\mathrm{2}} \:{e}^{{x}} \\ $$

  Pg 1406      Pg 1407      Pg 1408      Pg 1409      Pg 1410      Pg 1411      Pg 1412      Pg 1413      Pg 1414      Pg 1415   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com