Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1408

Question Number 68087    Answers: 0   Comments: 2

Hello friends! I ask name of a high level book of integral calculus.

$${Hello}\:{friends}!\:{I}\:{ask}\:{name}\:{of}\:{a}\:{high} \\ $$$${level}\:{book}\:{of}\:{integral}\:{calculus}. \\ $$

Question Number 68079    Answers: 1   Comments: 0

Question Number 68078    Answers: 1   Comments: 0

Question Number 68077    Answers: 0   Comments: 0

Question Number 68073    Answers: 0   Comments: 1

A straight rod AB which is 60cm long,is in equilibrum when horizontal and supported at a point C,10cm from A, with masses 6kg and 1kg attached to the rod at A and B respectively.It is also in equilibrum and horizontal when supported at another pivott at its mid- point,with masses of 2kg and 5kg attatched at A and B respectively.Find the mass of the rod amd its C.G from point A.

$$\:{A}\:{straight}\:{rod}\:{AB}\:{which}\:{is}\:\mathrm{60}{cm}\:{long},{is} \\ $$$${in}\:{equilibrum}\:{when}\:{horizontal}\:{and} \\ $$$${supported}\:{at}\:{a}\:{point}\:{C},\mathrm{10}{cm}\:{from}\:{A}, \\ $$$${with}\:{masses}\:\mathrm{6}{kg}\:{and}\:\mathrm{1}{kg}\:{attached}\:{to}\:{the} \\ $$$${rod}\:{at}\:{A}\:{and}\:{B}\:{respectively}.{It}\:{is}\:{also}\:{in} \\ $$$${equilibrum}\:{and}\:{horizontal}\:{when}\: \\ $$$${supported}\:{at}\:{another}\:{pivott}\:{at}\:{its}\:{mid}- \\ $$$${point},{with}\:{masses}\:{of}\:\mathrm{2}{kg}\:{and}\:\mathrm{5}{kg}\: \\ $$$${attatched}\:{at}\:{A}\:{and}\:{B}\:{respectively}.{Find} \\ $$$${the}\:{mass}\:{of}\:{the}\:{rod}\:{amd}\:{its}\:{C}.{G}\:{from} \\ $$$${point}\:{A}. \\ $$

Question Number 68068    Answers: 0   Comments: 2

find e^(1/ln2) =?

$${find}\:{e}^{\mathrm{1}/{ln}\mathrm{2}} \:\:=? \\ $$

Question Number 68062    Answers: 0   Comments: 1

Question Number 68052    Answers: 0   Comments: 0

Question Number 68046    Answers: 1   Comments: 0

Question Number 68041    Answers: 0   Comments: 1

Question Number 68040    Answers: 1   Comments: 2

find f(a) =∫_1 ^2 arctan(x+(a/x))dx and calculate f^′ (a) at form of integral

$${find}\:{f}\left({a}\right)\:=\int_{\mathrm{1}} ^{\mathrm{2}} {arctan}\left({x}+\frac{{a}}{{x}}\right){dx}\:\:{and} \\ $$$${calculate}\:{f}^{'} \left({a}\right)\:{at}\:{form}\:{of}\:{integral} \\ $$

Question Number 68039    Answers: 0   Comments: 1

find ∫ arctan(x+(1/x))dx

$${find}\:\int\:\:{arctan}\left({x}+\frac{\mathrm{1}}{{x}}\right){dx} \\ $$

Question Number 68038    Answers: 0   Comments: 1

calculate ∫_0 ^∞ ((arctan(x^2 −1))/(x^2 +4))dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left({x}^{\mathrm{2}} −\mathrm{1}\right)}{{x}^{\mathrm{2}} \:+\mathrm{4}}{dx} \\ $$

Question Number 68037    Answers: 1   Comments: 0

find ∫ ((x^2 dx)/((x^3 −8)(x^4 +1)))

$${find}\:\int\:\:\:\frac{{x}^{\mathrm{2}} {dx}}{\left({x}^{\mathrm{3}} −\mathrm{8}\right)\left({x}^{\mathrm{4}} \:+\mathrm{1}\right)} \\ $$

Question Number 68036    Answers: 0   Comments: 1

let f(x) =cos(αx) ,2π periodic developp f at fourier serie. α ∈ R−Z

$${let}\:{f}\left({x}\right)\:={cos}\left(\alpha{x}\right)\:\:,\mathrm{2}\pi\:{periodic}\:\:\:{developp}\:{f}\:{at}\:{fourier}\:{serie}. \\ $$$$\alpha\:\in\:{R}−{Z} \\ $$

Question Number 68035    Answers: 0   Comments: 4

let f(x) =e^(−iαx) ,2π periodic .developp f at fourier serie.

$${let}\:{f}\left({x}\right)\:={e}^{−{i}\alpha{x}} \:\:\:\:,\mathrm{2}\pi\:\:{periodic}\:\:.{developp}\:{f}\:{at}\:{fourier}\:{serie}. \\ $$

Question Number 68034    Answers: 0   Comments: 1

let f(x) =e^(−x) , 2π periodic developp f at fourier serie.

$${let}\:{f}\left({x}\right)\:={e}^{−{x}} \:\:,\:\:\mathrm{2}\pi\:\:{periodic}\:\:{developp}\:{f}\:{at}\:{fourier}\:{serie}. \\ $$

Question Number 68033    Answers: 1   Comments: 0

find ∫ (dx/(1+sinx +sin(2x)))

$${find}\:\int\:\:\frac{{dx}}{\mathrm{1}+{sinx}\:+{sin}\left(\mathrm{2}{x}\right)} \\ $$

Question Number 68028    Answers: 0   Comments: 0

Question Number 68022    Answers: 1   Comments: 1

Question Number 68021    Answers: 1   Comments: 1

Question Number 68019    Answers: 0   Comments: 5

let F(x) =∫_x ^(x^2 +1) e^(−2t) sin(xt)dt determine F^′ (x) and calculate lim_(x→0) F(x).

$${let}\:{F}\left({x}\right)\:=\int_{{x}} ^{{x}^{\mathrm{2}} +\mathrm{1}} {e}^{−\mathrm{2}{t}} {sin}\left({xt}\right){dt} \\ $$$${determine}\:{F}\:^{'} \left({x}\right)\:{and}\:{calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:{F}\left({x}\right). \\ $$$$ \\ $$

Question Number 68001    Answers: 0   Comments: 1

let F(x)=∫_(2x) ^(x^2 +1) (e^(−xt) /(x+2t))dt calculate F^′ (x)

$${let}\:{F}\left({x}\right)=\int_{\mathrm{2}{x}} ^{{x}^{\mathrm{2}} +\mathrm{1}} \:\:\frac{{e}^{−{xt}} }{{x}+\mathrm{2}{t}}{dt}\:\:\:\:{calculate}\:{F}\:^{'} \left({x}\right) \\ $$

Question Number 67997    Answers: 0   Comments: 0

5y^2 +2axy+b=0 ay^2 +2bx+5c=0 (5x+3a)y^2 +(4ax^2 )y−bx−5c=0 5y^2 −x(5x+2a)y−ax^3 −3b=0 Please solve simultaneously for x and y such that all four equations are obeyed.

$$\mathrm{5}{y}^{\mathrm{2}} +\mathrm{2}{axy}+{b}=\mathrm{0} \\ $$$${ay}^{\mathrm{2}} +\mathrm{2}{bx}+\mathrm{5}{c}=\mathrm{0} \\ $$$$\left(\mathrm{5}{x}+\mathrm{3}{a}\right){y}^{\mathrm{2}} +\left(\mathrm{4}{ax}^{\mathrm{2}} \right){y}−{bx}−\mathrm{5}{c}=\mathrm{0} \\ $$$$\mathrm{5}{y}^{\mathrm{2}} −{x}\left(\mathrm{5}{x}+\mathrm{2}{a}\right){y}−{ax}^{\mathrm{3}} −\mathrm{3}{b}=\mathrm{0} \\ $$$${Please}\:{solve}\:{simultaneously} \\ $$$${for}\:{x}\:{and}\:{y}\:{such}\:{that}\:{all}\:{four} \\ $$$${equations}\:{are}\:{obeyed}. \\ $$

Question Number 67996    Answers: 1   Comments: 4

Question Number 67992    Answers: 1   Comments: 0

(1) z=a+bi (2) z=re^(iθ) express the values of (a) real (z^z ) [real part] (b) imag (z^z ) [imaginary part] (c) abs (z^z ) [absolute value] (d) arg (z^z ) [argument = angle]

$$\left(\mathrm{1}\right)\:{z}={a}+{b}\mathrm{i} \\ $$$$\left(\mathrm{2}\right)\:{z}={r}\mathrm{e}^{\mathrm{i}\theta} \\ $$$$\mathrm{express}\:\mathrm{the}\:\mathrm{values}\:\mathrm{of} \\ $$$$\left(\mathrm{a}\right)\:\mathrm{real}\:\left({z}^{{z}} \right)\:\:\:\:\:\left[\mathrm{real}\:\mathrm{part}\right] \\ $$$$\left(\mathrm{b}\right)\:\mathrm{imag}\:\left({z}^{{z}} \right)\:\:\:\:\:\left[\mathrm{imaginary}\:\mathrm{part}\right] \\ $$$$\left(\mathrm{c}\right)\:\mathrm{abs}\:\left({z}^{{z}} \right)\:\:\:\:\:\left[\mathrm{absolute}\:\mathrm{value}\right] \\ $$$$\left(\mathrm{d}\right)\:\mathrm{arg}\:\left({z}^{{z}} \right)\:\:\:\:\:\left[\mathrm{argument}\:=\:\mathrm{angle}\right] \\ $$

  Pg 1403      Pg 1404      Pg 1405      Pg 1406      Pg 1407      Pg 1408      Pg 1409      Pg 1410      Pg 1411      Pg 1412   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com