Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1408
Question Number 70627 Answers: 0 Comments: 0
$${please}\:{great}\:{physicist}\:{check}\:{question}\: \\ $$$$\mathrm{70568}\:{please}\:{help} \\ $$
Question Number 70620 Answers: 0 Comments: 4
Question Number 70617 Answers: 1 Comments: 0
$${given}\:{that}\:\:\alpha\:{and}\:\beta\:{are}\:{roots}\:{of}\:{the}\:{equation}\:{x}^{\mathrm{2}} −\mathrm{5}{x}\:+\:\mathrm{4}\:=\mathrm{0}\: \\ $$$$\alpha>\mathrm{0}\:{and}\:\beta\:>\mathrm{0} \\ $$$${find}\:{an}\:{equation}\:{whose}\:{roots}\:{are}\:\sqrt{\alpha}\:{and}\:\sqrt{\beta}\: \\ $$$$ \\ $$$${how}\:{do}\:{i}\:{find}\:\:\sqrt{\alpha\:}\:+\:\sqrt{\beta}\: \\ $$
Question Number 70602 Answers: 0 Comments: 1
$$\mathrm{I}=\int_{\mathrm{0}} ^{\infty} \mathrm{ln}\left(\sqrt{\mathrm{1}−\mathrm{x}}\:+\sqrt{\mathrm{1}+\mathrm{x}}\right)\mathrm{dx} \\ $$
Question Number 70601 Answers: 1 Comments: 0
$$\mathrm{prove}\:\mathrm{thst}\:\mathrm{I}=\int_{\mathrm{0}} ^{\infty} \mathrm{f}\left(\mathrm{x}+\frac{\mathrm{1}}{×}\right)\frac{\mathrm{lnx}}{\mathrm{x}}\mathrm{dx}=\mathrm{0} \\ $$
Question Number 70598 Answers: 1 Comments: 0
$$\mathrm{If}\:\mathrm{a},\mathrm{b},\mathrm{c}\:\in\:\Re\:\mathrm{and}\:\frac{\mathrm{a}^{\mathrm{2}} }{\mathrm{b}+\mathrm{c}}+\frac{\mathrm{b}^{\mathrm{2}} }{\mathrm{c}+\mathrm{a}}+\frac{\mathrm{c}^{\mathrm{2}} }{\mathrm{a}+\mathrm{b}}=\frac{\mathrm{12}}{\mathrm{a}+\mathrm{b}+\mathrm{c}} \\ $$$$,\:\frac{\mathrm{a}}{\mathrm{b}+\mathrm{c}}+\frac{\mathrm{b}}{\mathrm{a}+\mathrm{c}}+\frac{\mathrm{c}}{\mathrm{a}+\mathrm{b}}=\frac{\mathrm{4}}{\mathrm{3}}\:\mathrm{then}\:\mathrm{find}\:\mathrm{a}+\mathrm{b}+\mathrm{c}=? \\ $$
Question Number 70597 Answers: 4 Comments: 0
$${solve} \\ $$$$\mathrm{cos}\:^{\mathrm{2}} \beta+\mathrm{cos}\:^{\mathrm{2}} \mathrm{3}\beta=\mathrm{1} \\ $$
Question Number 70596 Answers: 1 Comments: 1
$${caoculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\frac{{cos}\left({sin}\left({x}^{\mathrm{2}} \right)\right)−\mathrm{1}}{{x}^{\mathrm{2}} } \\ $$
Question Number 70595 Answers: 0 Comments: 1
$${calculate}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)^{\mathrm{3}} } \\ $$
Question Number 70594 Answers: 1 Comments: 1
$${calculate}\:{by}\:{residus}\:{method}\:{the}\:{integral}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{{n}} } \\ $$$${with}\:{n}\:{integr}\:{and}\:{n}\geqslant\mathrm{1} \\ $$
Question Number 70592 Answers: 1 Comments: 1
Question Number 70590 Answers: 1 Comments: 1
Question Number 70583 Answers: 1 Comments: 0
$$\mathrm{Given}\:\mathrm{that}\:\mathrm{y}=\frac{\mathrm{4}}{\sqrt{\left(\mathrm{x}^{\mathrm{3}} +\mathrm{1}\right)}}\:\mathrm{show}\:\mathrm{that}\:\mathrm{2}\left(\mathrm{x}^{\mathrm{3}} +\mathrm{1}\right)\frac{\mathrm{dy}}{\mathrm{dx}}=−\mathrm{3x}^{\mathrm{2}} \mathrm{y}. \\ $$
Question Number 70587 Answers: 0 Comments: 1
Question Number 70568 Answers: 0 Comments: 1
Question Number 70562 Answers: 0 Comments: 0
Question Number 70571 Answers: 0 Comments: 1
Question Number 70582 Answers: 0 Comments: 1
Question Number 70543 Answers: 0 Comments: 6
Question Number 70525 Answers: 1 Comments: 0
$${If}\:{x},{y},{z}\:{is}\:{a}\:{primitive}\:{Pythagorean} \\ $$$${triple},{prove}\:{that}\:{x}+{y}\:{and}\:{x}−{y}\:{are} \\ $$$${congruent}\:{modulo}\:\mathrm{8}\:{to}\:{either}\:\mathrm{1}\:{or}\:\mathrm{7}. \\ $$
Question Number 70519 Answers: 0 Comments: 3
Question Number 70518 Answers: 2 Comments: 2
$$\mathrm{If}\:\mathrm{a}^{\mathrm{3}} −\mathrm{b}^{\mathrm{3}} =\:\mathrm{513}\:\mathrm{and}\:\mathrm{ab}=\:\mathrm{54}\:\mathrm{then}\:\mathrm{find}\: \\ $$$$\mathrm{a}−\mathrm{b}=\:? \\ $$
Question Number 70516 Answers: 1 Comments: 1
Question Number 70513 Answers: 0 Comments: 1
Question Number 70512 Answers: 1 Comments: 1
$$\mathrm{The}\:\mathrm{faculty}\:\mathrm{of}\:\mathrm{science}\:\mathrm{news}\:\mathrm{paper}\:\mathrm{reports}\:\mathrm{that}\:\mathrm{the}\:\mathrm{combined}\:\mathrm{membership}\:\mathrm{of}\:\mathrm{the}\:\:\mathrm{mathematics}\:\mathrm{club}\:\mathrm{and}\:\mathrm{science}\:\:\mathrm{club}\:\mathrm{is}\:\mathrm{122}\:\mathrm{students}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{total}\:\mathrm{membership}\:\mathrm{of}\:\mathrm{the}\:\mathrm{chemistry}\:\mathrm{club}? \\ $$
Question Number 70499 Answers: 0 Comments: 2
Pg 1403 Pg 1404 Pg 1405 Pg 1406 Pg 1407 Pg 1408 Pg 1409 Pg 1410 Pg 1411 Pg 1412
Terms of Service
Privacy Policy
Contact: info@tinkutara.com