Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1408

Question Number 70627    Answers: 0   Comments: 0

please great physicist check question 70568 please help

$${please}\:{great}\:{physicist}\:{check}\:{question}\: \\ $$$$\mathrm{70568}\:{please}\:{help} \\ $$

Question Number 70620    Answers: 0   Comments: 4

Question Number 70617    Answers: 1   Comments: 0

given that α and β are roots of the equation x^2 −5x + 4 =0 α>0 and β >0 find an equation whose roots are (√α) and (√β) how do i find (√(α )) + (√β)

$${given}\:{that}\:\:\alpha\:{and}\:\beta\:{are}\:{roots}\:{of}\:{the}\:{equation}\:{x}^{\mathrm{2}} −\mathrm{5}{x}\:+\:\mathrm{4}\:=\mathrm{0}\: \\ $$$$\alpha>\mathrm{0}\:{and}\:\beta\:>\mathrm{0} \\ $$$${find}\:{an}\:{equation}\:{whose}\:{roots}\:{are}\:\sqrt{\alpha}\:{and}\:\sqrt{\beta}\: \\ $$$$ \\ $$$${how}\:{do}\:{i}\:{find}\:\:\sqrt{\alpha\:}\:+\:\sqrt{\beta}\: \\ $$

Question Number 70602    Answers: 0   Comments: 1

I=∫_0 ^∞ ln((√(1−x)) +(√(1+x)))dx

$$\mathrm{I}=\int_{\mathrm{0}} ^{\infty} \mathrm{ln}\left(\sqrt{\mathrm{1}−\mathrm{x}}\:+\sqrt{\mathrm{1}+\mathrm{x}}\right)\mathrm{dx} \\ $$

Question Number 70601    Answers: 1   Comments: 0

prove thst I=∫_0 ^∞ f(x+(1/×))((lnx)/x)dx=0

$$\mathrm{prove}\:\mathrm{thst}\:\mathrm{I}=\int_{\mathrm{0}} ^{\infty} \mathrm{f}\left(\mathrm{x}+\frac{\mathrm{1}}{×}\right)\frac{\mathrm{lnx}}{\mathrm{x}}\mathrm{dx}=\mathrm{0} \\ $$

Question Number 70598    Answers: 1   Comments: 0

If a,b,c ∈ ℜ and (a^2 /(b+c))+(b^2 /(c+a))+(c^2 /(a+b))=((12)/(a+b+c)) , (a/(b+c))+(b/(a+c))+(c/(a+b))=(4/3) then find a+b+c=?

$$\mathrm{If}\:\mathrm{a},\mathrm{b},\mathrm{c}\:\in\:\Re\:\mathrm{and}\:\frac{\mathrm{a}^{\mathrm{2}} }{\mathrm{b}+\mathrm{c}}+\frac{\mathrm{b}^{\mathrm{2}} }{\mathrm{c}+\mathrm{a}}+\frac{\mathrm{c}^{\mathrm{2}} }{\mathrm{a}+\mathrm{b}}=\frac{\mathrm{12}}{\mathrm{a}+\mathrm{b}+\mathrm{c}} \\ $$$$,\:\frac{\mathrm{a}}{\mathrm{b}+\mathrm{c}}+\frac{\mathrm{b}}{\mathrm{a}+\mathrm{c}}+\frac{\mathrm{c}}{\mathrm{a}+\mathrm{b}}=\frac{\mathrm{4}}{\mathrm{3}}\:\mathrm{then}\:\mathrm{find}\:\mathrm{a}+\mathrm{b}+\mathrm{c}=? \\ $$

Question Number 70597    Answers: 4   Comments: 0

solve cos^2 β+cos^2 3β=1

$${solve} \\ $$$$\mathrm{cos}\:^{\mathrm{2}} \beta+\mathrm{cos}\:^{\mathrm{2}} \mathrm{3}\beta=\mathrm{1} \\ $$

Question Number 70596    Answers: 1   Comments: 1

caoculate lim_(x→0) ((cos(sin(x^2 ))−1)/x^2 )

$${caoculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\frac{{cos}\left({sin}\left({x}^{\mathrm{2}} \right)\right)−\mathrm{1}}{{x}^{\mathrm{2}} } \\ $$

Question Number 70595    Answers: 0   Comments: 1

calculate Σ_(n=1) ^∞ (((−1)^n )/(n^2 (n+1)^3 ))

$${calculate}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)^{\mathrm{3}} } \\ $$

Question Number 70594    Answers: 1   Comments: 1

calculate by residus method the integral ∫_0 ^∞ (dx/((1+x^2 )^n )) with n integr and n≥1

$${calculate}\:{by}\:{residus}\:{method}\:{the}\:{integral}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{{n}} } \\ $$$${with}\:{n}\:{integr}\:{and}\:{n}\geqslant\mathrm{1} \\ $$

Question Number 70592    Answers: 1   Comments: 1

Question Number 70590    Answers: 1   Comments: 1

Question Number 70583    Answers: 1   Comments: 0

Given that y=(4/(√((x^3 +1)))) show that 2(x^3 +1)(dy/dx)=−3x^2 y.

$$\mathrm{Given}\:\mathrm{that}\:\mathrm{y}=\frac{\mathrm{4}}{\sqrt{\left(\mathrm{x}^{\mathrm{3}} +\mathrm{1}\right)}}\:\mathrm{show}\:\mathrm{that}\:\mathrm{2}\left(\mathrm{x}^{\mathrm{3}} +\mathrm{1}\right)\frac{\mathrm{dy}}{\mathrm{dx}}=−\mathrm{3x}^{\mathrm{2}} \mathrm{y}. \\ $$

Question Number 70587    Answers: 0   Comments: 1

Question Number 70568    Answers: 0   Comments: 1

Question Number 70562    Answers: 0   Comments: 0

Question Number 70571    Answers: 0   Comments: 1

Question Number 70582    Answers: 0   Comments: 1

Given that y=(4/(√((x^3 +1)))) show that 2(x^3 +1)(dy/dx)=−3x^2 y.

$$\mathrm{Given}\:\mathrm{that}\:\mathrm{y}=\frac{\mathrm{4}}{\sqrt{\left(\mathrm{x}^{\mathrm{3}} +\mathrm{1}\right)}}\:\mathrm{show}\:\mathrm{that}\:\mathrm{2}\left(\mathrm{x}^{\mathrm{3}} +\mathrm{1}\right)\frac{\mathrm{dy}}{\mathrm{dx}}=−\mathrm{3x}^{\mathrm{2}} \mathrm{y}. \\ $$

Question Number 70543    Answers: 0   Comments: 6

Question Number 70525    Answers: 1   Comments: 0

If x,y,z is a primitive Pythagorean triple,prove that x+y and x−y are congruent modulo 8 to either 1 or 7.

$${If}\:{x},{y},{z}\:{is}\:{a}\:{primitive}\:{Pythagorean} \\ $$$${triple},{prove}\:{that}\:{x}+{y}\:{and}\:{x}−{y}\:{are} \\ $$$${congruent}\:{modulo}\:\mathrm{8}\:{to}\:{either}\:\mathrm{1}\:{or}\:\mathrm{7}. \\ $$

Question Number 70519    Answers: 0   Comments: 3

Question Number 70518    Answers: 2   Comments: 2

If a^3 −b^3 = 513 and ab= 54 then find a−b= ?

$$\mathrm{If}\:\mathrm{a}^{\mathrm{3}} −\mathrm{b}^{\mathrm{3}} =\:\mathrm{513}\:\mathrm{and}\:\mathrm{ab}=\:\mathrm{54}\:\mathrm{then}\:\mathrm{find}\: \\ $$$$\mathrm{a}−\mathrm{b}=\:? \\ $$

Question Number 70516    Answers: 1   Comments: 1

Question Number 70513    Answers: 0   Comments: 1

Question Number 70512    Answers: 1   Comments: 1

The faculty of science news paper reports that the combined membership of the mathematics club and science club is 122 students. What is the total membership of the chemistry club?

$$\mathrm{The}\:\mathrm{faculty}\:\mathrm{of}\:\mathrm{science}\:\mathrm{news}\:\mathrm{paper}\:\mathrm{reports}\:\mathrm{that}\:\mathrm{the}\:\mathrm{combined}\:\mathrm{membership}\:\mathrm{of}\:\mathrm{the}\:\:\mathrm{mathematics}\:\mathrm{club}\:\mathrm{and}\:\mathrm{science}\:\:\mathrm{club}\:\mathrm{is}\:\mathrm{122}\:\mathrm{students}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{total}\:\mathrm{membership}\:\mathrm{of}\:\mathrm{the}\:\mathrm{chemistry}\:\mathrm{club}? \\ $$

Question Number 70499    Answers: 0   Comments: 2

  Pg 1403      Pg 1404      Pg 1405      Pg 1406      Pg 1407      Pg 1408      Pg 1409      Pg 1410      Pg 1411      Pg 1412   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com