Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1407

Question Number 70598    Answers: 1   Comments: 0

If a,b,c ∈ ℜ and (a^2 /(b+c))+(b^2 /(c+a))+(c^2 /(a+b))=((12)/(a+b+c)) , (a/(b+c))+(b/(a+c))+(c/(a+b))=(4/3) then find a+b+c=?

$$\mathrm{If}\:\mathrm{a},\mathrm{b},\mathrm{c}\:\in\:\Re\:\mathrm{and}\:\frac{\mathrm{a}^{\mathrm{2}} }{\mathrm{b}+\mathrm{c}}+\frac{\mathrm{b}^{\mathrm{2}} }{\mathrm{c}+\mathrm{a}}+\frac{\mathrm{c}^{\mathrm{2}} }{\mathrm{a}+\mathrm{b}}=\frac{\mathrm{12}}{\mathrm{a}+\mathrm{b}+\mathrm{c}} \\ $$$$,\:\frac{\mathrm{a}}{\mathrm{b}+\mathrm{c}}+\frac{\mathrm{b}}{\mathrm{a}+\mathrm{c}}+\frac{\mathrm{c}}{\mathrm{a}+\mathrm{b}}=\frac{\mathrm{4}}{\mathrm{3}}\:\mathrm{then}\:\mathrm{find}\:\mathrm{a}+\mathrm{b}+\mathrm{c}=? \\ $$

Question Number 70597    Answers: 4   Comments: 0

solve cos^2 β+cos^2 3β=1

$${solve} \\ $$$$\mathrm{cos}\:^{\mathrm{2}} \beta+\mathrm{cos}\:^{\mathrm{2}} \mathrm{3}\beta=\mathrm{1} \\ $$

Question Number 70596    Answers: 1   Comments: 1

caoculate lim_(x→0) ((cos(sin(x^2 ))−1)/x^2 )

$${caoculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\frac{{cos}\left({sin}\left({x}^{\mathrm{2}} \right)\right)−\mathrm{1}}{{x}^{\mathrm{2}} } \\ $$

Question Number 70595    Answers: 0   Comments: 1

calculate Σ_(n=1) ^∞ (((−1)^n )/(n^2 (n+1)^3 ))

$${calculate}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)^{\mathrm{3}} } \\ $$

Question Number 70594    Answers: 1   Comments: 1

calculate by residus method the integral ∫_0 ^∞ (dx/((1+x^2 )^n )) with n integr and n≥1

$${calculate}\:{by}\:{residus}\:{method}\:{the}\:{integral}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{{n}} } \\ $$$${with}\:{n}\:{integr}\:{and}\:{n}\geqslant\mathrm{1} \\ $$

Question Number 70592    Answers: 1   Comments: 1

Question Number 70590    Answers: 1   Comments: 1

Question Number 70583    Answers: 1   Comments: 0

Given that y=(4/(√((x^3 +1)))) show that 2(x^3 +1)(dy/dx)=−3x^2 y.

$$\mathrm{Given}\:\mathrm{that}\:\mathrm{y}=\frac{\mathrm{4}}{\sqrt{\left(\mathrm{x}^{\mathrm{3}} +\mathrm{1}\right)}}\:\mathrm{show}\:\mathrm{that}\:\mathrm{2}\left(\mathrm{x}^{\mathrm{3}} +\mathrm{1}\right)\frac{\mathrm{dy}}{\mathrm{dx}}=−\mathrm{3x}^{\mathrm{2}} \mathrm{y}. \\ $$

Question Number 70587    Answers: 0   Comments: 1

Question Number 70568    Answers: 0   Comments: 1

Question Number 70562    Answers: 0   Comments: 0

Question Number 70571    Answers: 0   Comments: 1

Question Number 70582    Answers: 0   Comments: 1

Given that y=(4/(√((x^3 +1)))) show that 2(x^3 +1)(dy/dx)=−3x^2 y.

$$\mathrm{Given}\:\mathrm{that}\:\mathrm{y}=\frac{\mathrm{4}}{\sqrt{\left(\mathrm{x}^{\mathrm{3}} +\mathrm{1}\right)}}\:\mathrm{show}\:\mathrm{that}\:\mathrm{2}\left(\mathrm{x}^{\mathrm{3}} +\mathrm{1}\right)\frac{\mathrm{dy}}{\mathrm{dx}}=−\mathrm{3x}^{\mathrm{2}} \mathrm{y}. \\ $$

Question Number 70543    Answers: 0   Comments: 6

Question Number 70525    Answers: 1   Comments: 0

If x,y,z is a primitive Pythagorean triple,prove that x+y and x−y are congruent modulo 8 to either 1 or 7.

$${If}\:{x},{y},{z}\:{is}\:{a}\:{primitive}\:{Pythagorean} \\ $$$${triple},{prove}\:{that}\:{x}+{y}\:{and}\:{x}−{y}\:{are} \\ $$$${congruent}\:{modulo}\:\mathrm{8}\:{to}\:{either}\:\mathrm{1}\:{or}\:\mathrm{7}. \\ $$

Question Number 70519    Answers: 0   Comments: 3

Question Number 70518    Answers: 2   Comments: 2

If a^3 −b^3 = 513 and ab= 54 then find a−b= ?

$$\mathrm{If}\:\mathrm{a}^{\mathrm{3}} −\mathrm{b}^{\mathrm{3}} =\:\mathrm{513}\:\mathrm{and}\:\mathrm{ab}=\:\mathrm{54}\:\mathrm{then}\:\mathrm{find}\: \\ $$$$\mathrm{a}−\mathrm{b}=\:? \\ $$

Question Number 70516    Answers: 1   Comments: 1

Question Number 70513    Answers: 0   Comments: 1

Question Number 70512    Answers: 1   Comments: 1

The faculty of science news paper reports that the combined membership of the mathematics club and science club is 122 students. What is the total membership of the chemistry club?

$$\mathrm{The}\:\mathrm{faculty}\:\mathrm{of}\:\mathrm{science}\:\mathrm{news}\:\mathrm{paper}\:\mathrm{reports}\:\mathrm{that}\:\mathrm{the}\:\mathrm{combined}\:\mathrm{membership}\:\mathrm{of}\:\mathrm{the}\:\:\mathrm{mathematics}\:\mathrm{club}\:\mathrm{and}\:\mathrm{science}\:\:\mathrm{club}\:\mathrm{is}\:\mathrm{122}\:\mathrm{students}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{total}\:\mathrm{membership}\:\mathrm{of}\:\mathrm{the}\:\mathrm{chemistry}\:\mathrm{club}? \\ $$

Question Number 70499    Answers: 0   Comments: 2

Question Number 70497    Answers: 1   Comments: 1

Question Number 70520    Answers: 0   Comments: 0

Question Number 70483    Answers: 1   Comments: 3

∫((ln2x)/(ln4x)).(dx/x)

$$\int\frac{{ln}\mathrm{2}{x}}{{ln}\mathrm{4}{x}}.\frac{{dx}}{{x}} \\ $$

Question Number 70482    Answers: 1   Comments: 2

∫((sin^3 x)/(√(cosx)))dx

$$\int\frac{{sin}^{\mathrm{3}} {x}}{\sqrt{{cosx}}}{dx} \\ $$

Question Number 70473    Answers: 0   Comments: 1

While posting photos of printed material please use app (like camscanner) so that picture will look clean. Also please crop pictures and upload in correct orientation. In built editor support near all maths symbols and constructs. Please go thru tutorial video and you will be able to write basic math like fraction, integral etc in less than 15 mins and you wont need to use pictures except for shapes.

$$ \\ $$$$\mathrm{While}\:\mathrm{posting}\:\mathrm{photos}\:\mathrm{of}\:\mathrm{printed}\:\mathrm{material} \\ $$$$\mathrm{please}\:\mathrm{use}\:\mathrm{app}\:\left(\mathrm{like}\:\mathrm{camscanner}\right)\:\mathrm{so} \\ $$$$\mathrm{that}\:\mathrm{picture}\:\mathrm{will}\:\mathrm{look}\:\mathrm{clean}. \\ $$$$\mathrm{Also}\:\mathrm{please}\:\mathrm{crop}\:\mathrm{pictures}\:\mathrm{and}\:\mathrm{upload} \\ $$$$\mathrm{in}\:\mathrm{correct}\:\mathrm{orientation}. \\ $$$$ \\ $$$$\mathrm{In}\:\mathrm{built}\:\mathrm{editor}\:\mathrm{support}\:\mathrm{near}\:\mathrm{all}\:\mathrm{maths} \\ $$$$\mathrm{symbols}\:\mathrm{and}\:\mathrm{constructs}.\:\mathrm{Please}\:\mathrm{go} \\ $$$$\mathrm{thru}\:\mathrm{tutorial}\:\mathrm{video}\:\mathrm{and}\:\mathrm{you}\:\mathrm{will}\:\mathrm{be}\:\mathrm{able} \\ $$$$\mathrm{to}\:\mathrm{write}\:\mathrm{basic}\:\mathrm{math}\:\mathrm{like}\:\mathrm{fraction},\: \\ $$$$\mathrm{integral}\:\mathrm{etc}\:\mathrm{in}\:\mathrm{less}\:\mathrm{than}\:\mathrm{15}\:\mathrm{mins}\:\mathrm{and} \\ $$$$\mathrm{you}\:\mathrm{wont}\:\mathrm{need}\:\mathrm{to}\:\mathrm{use}\:\mathrm{pictures}\:\mathrm{except} \\ $$$$\mathrm{for}\:\mathrm{shapes}. \\ $$$$ \\ $$

  Pg 1402      Pg 1403      Pg 1404      Pg 1405      Pg 1406      Pg 1407      Pg 1408      Pg 1409      Pg 1410      Pg 1411   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com