Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1407

Question Number 69479    Answers: 0   Comments: 2

to Sir Aifour: we can construct polynomes of both 3^(rd) and 4^(th) degree in a way that the constants are ∈Z or ∈Q and the solutions are not trivial i.e. (t−α)(t+(α/2)−(√β))(t+(α/2)+(√β))=0∧t=x+(γ/3) ⇔ x^3 +γx^2 −(((3α^2 )/4)+β−(γ^2 /3))x−((α^3 /4)+((α^2 γ)/4)−αβ+((βγ)/3)−(γ^3 /(27)))=0 or the more complicated with sinus/cosinus (x−α−(√β)−(√γ)−(√δ))(x−α−(√β)+(√γ)+(√δ))(x−α+(√β)−(√γ)+(√δ))(x−α+(√β)+(√γ)−(√δ))=0 where all constants ∈Q if (√(βγδ))∈Q I could not find a similar construction for a polynome of 5^(th) degree, where the 5 roots are of comparable complexity [(x−a)(x−b−ci)(x−b+ci)(x−d−ei)(x−d+ei) doesn′t count] maybe you should at first focus on this

$$\mathrm{to}\:\mathrm{Sir}\:\mathrm{Aifour}: \\ $$$$\mathrm{we}\:\mathrm{can}\:\mathrm{construct}\:\mathrm{polynomes}\:\mathrm{of}\:\mathrm{both}\:\mathrm{3}^{\mathrm{rd}} \:\mathrm{and} \\ $$$$\mathrm{4}^{\mathrm{th}} \:\mathrm{degree}\:\mathrm{in}\:\mathrm{a}\:\mathrm{way}\:\mathrm{that}\:\mathrm{the}\:\mathrm{constants}\:\mathrm{are} \\ $$$$\in\mathbb{Z}\:\mathrm{or}\:\in\mathbb{Q}\:\mathrm{and}\:\mathrm{the}\:\mathrm{solutions}\:\mathrm{are}\:\mathrm{not}\:\mathrm{trivial} \\ $$$$\mathrm{i}.\mathrm{e}. \\ $$$$\left({t}−\alpha\right)\left({t}+\frac{\alpha}{\mathrm{2}}−\sqrt{\beta}\right)\left({t}+\frac{\alpha}{\mathrm{2}}+\sqrt{\beta}\right)=\mathrm{0}\wedge{t}={x}+\frac{\gamma}{\mathrm{3}} \\ $$$$\Leftrightarrow \\ $$$${x}^{\mathrm{3}} +\gamma{x}^{\mathrm{2}} −\left(\frac{\mathrm{3}\alpha^{\mathrm{2}} }{\mathrm{4}}+\beta−\frac{\gamma^{\mathrm{2}} }{\mathrm{3}}\right){x}−\left(\frac{\alpha^{\mathrm{3}} }{\mathrm{4}}+\frac{\alpha^{\mathrm{2}} \gamma}{\mathrm{4}}−\alpha\beta+\frac{\beta\gamma}{\mathrm{3}}−\frac{\gamma^{\mathrm{3}} }{\mathrm{27}}\right)=\mathrm{0} \\ $$$$\mathrm{or}\:\mathrm{the}\:\mathrm{more}\:\mathrm{complicated}\:\mathrm{with}\:\mathrm{sinus}/\mathrm{cosinus} \\ $$$$ \\ $$$$\left({x}−\alpha−\sqrt{\beta}−\sqrt{\gamma}−\sqrt{\delta}\right)\left({x}−\alpha−\sqrt{\beta}+\sqrt{\gamma}+\sqrt{\delta}\right)\left({x}−\alpha+\sqrt{\beta}−\sqrt{\gamma}+\sqrt{\delta}\right)\left({x}−\alpha+\sqrt{\beta}+\sqrt{\gamma}−\sqrt{\delta}\right)=\mathrm{0} \\ $$$$\mathrm{where}\:\mathrm{all}\:\mathrm{constants}\:\in\mathbb{Q}\:\mathrm{if}\:\sqrt{\beta\gamma\delta}\in\mathbb{Q} \\ $$$$ \\ $$$$\mathrm{I}\:\mathrm{could}\:\mathrm{not}\:\mathrm{find}\:\mathrm{a}\:\mathrm{similar}\:\mathrm{construction}\:\mathrm{for} \\ $$$$\mathrm{a}\:\mathrm{polynome}\:\mathrm{of}\:\mathrm{5}^{\mathrm{th}} \:\mathrm{degree},\:\mathrm{where}\:\mathrm{the}\:\mathrm{5}\:\mathrm{roots} \\ $$$$\mathrm{are}\:\mathrm{of}\:\mathrm{comparable}\:\mathrm{complexity} \\ $$$$\left[\left({x}−{a}\right)\left({x}−{b}−{c}\mathrm{i}\right)\left({x}−{b}+{c}\mathrm{i}\right)\left({x}−{d}−{e}\mathrm{i}\right)\left({x}−{d}+{e}\mathrm{i}\right)\right. \\ $$$$\left.\mathrm{doesn}'\mathrm{t}\:\mathrm{count}\right] \\ $$$$\mathrm{maybe}\:\mathrm{you}\:\mathrm{should}\:\mathrm{at}\:\mathrm{first}\:\mathrm{focus}\:\mathrm{on}\:\mathrm{this} \\ $$

Question Number 69478    Answers: 0   Comments: 1

lim_(n→∞) sin(n𝛑) = ?

$$\:\:\underset{\boldsymbol{{n}}\rightarrow\infty} {\boldsymbol{{lim}sin}}\left(\boldsymbol{{n}\pi}\right)\:=\:? \\ $$

Question Number 69462    Answers: 0   Comments: 1

find the equation of the circle which ends one of the diameters of two points p_1 (−2,3) and p_2 (4,5)

$$ \\ $$$${find}\:{the}\:{equation}\:{of}\:{the}\:{circle}\:{which}\:{ends}\:{one}\:{of}\:{the}\:{diameters}\:{of}\:{two}\:{points}\:{p}_{\mathrm{1}} \left(−\mathrm{2},\mathrm{3}\right)\:{and}\:{p}_{\mathrm{2}} \left(\mathrm{4},\mathrm{5}\right) \\ $$

Question Number 69460    Answers: 0   Comments: 1

find the equation of the circle whose center is the origin and touches the line 3x−4y−15=0

$${find}\:{the}\:{equation}\:{of}\:{the}\:{circle}\:{whose}\:{center}\:{is}\:{the}\:{origin}\:{and}\:{touches}\:{the}\:{line}\:\mathrm{3}{x}−\mathrm{4}{y}−\mathrm{15}=\mathrm{0} \\ $$

Question Number 69459    Answers: 0   Comments: 0

Question Number 69458    Answers: 0   Comments: 1

find the value sin(−13π/6) , cos(49π/4)

$${find}\:{the}\:{value}\:{sin}\left(−\mathrm{13}\pi/\mathrm{6}\right)\:,\:{cos}\left(\mathrm{49}\pi/\mathrm{4}\right) \\ $$$$ \\ $$

Question Number 69457    Answers: 1   Comments: 0

find value log40/9 +4log5 +2log6 ?

$${find}\:{value}\:{log}\mathrm{40}/\mathrm{9}\:\:+\mathrm{4}{log}\mathrm{5}\:\:+\mathrm{2}{log}\mathrm{6}\:\:? \\ $$

Question Number 69456    Answers: 1   Comments: 1

Question Number 69450    Answers: 0   Comments: 0

Question Number 69436    Answers: 1   Comments: 0

Question Number 69433    Answers: 1   Comments: 0

Question Number 69431    Answers: 2   Comments: 0

Question Number 69429    Answers: 0   Comments: 2

Question Number 69423    Answers: 0   Comments: 1

Question Number 69418    Answers: 0   Comments: 0

Question Number 69416    Answers: 1   Comments: 1

Question Number 69413    Answers: 0   Comments: 1

Question Number 69398    Answers: 2   Comments: 1

Question Number 69393    Answers: 0   Comments: 2

Question Number 69390    Answers: 0   Comments: 0

study the convergence of ∫_0 ^∞ (((1+x)^α −(1+x)^((β) )/x)dx and determine its value

$${study}\:{the}\:{convergence}\:{of} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\frac{\left(\mathrm{1}+{x}\right)^{\alpha} −\left(\mathrm{1}+{x}\right)^{\left(\beta\right.} }{{x}}{dx} \\ $$$${and}\:{determine}\:{its}\:{value} \\ $$

Question Number 69389    Answers: 0   Comments: 0

find ∫_(∣z+i∣=3) ((sinz)/(z+i))dz

$${find}\:\int_{\mid{z}+{i}\mid=\mathrm{3}} \:\:\frac{{sinz}}{{z}+{i}}{dz} \\ $$

Question Number 69379    Answers: 0   Comments: 1

calculste f(a) =∫_(−∞) ^(+∞) (((−1)^x^2 )/(x^2 +a^2 ))dx with a>0

$${calculste}\:{f}\left({a}\right)\:=\int_{−\infty} ^{+\infty} \:\:\:\frac{\left(−\mathrm{1}\right)^{{x}^{\mathrm{2}} } }{{x}^{\mathrm{2}} \:+{a}^{\mathrm{2}} }{dx}\:\:\:{with}\:{a}>\mathrm{0} \\ $$

Question Number 69377    Answers: 0   Comments: 0

sove x^2 y^′ −(x^3 +1)y =sin(2x)

$${sove}\:\:{x}^{\mathrm{2}} {y}^{'} \:\:−\left({x}^{\mathrm{3}} \:+\mathrm{1}\right){y}\:\:={sin}\left(\mathrm{2}{x}\right) \\ $$

Question Number 69376    Answers: 0   Comments: 1

calculate Σ_(n=1) ^∞ (((−1)^n )/(n^2 (n+1)^3 ))

$${calculate}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)^{\mathrm{3}} } \\ $$

Question Number 69375    Answers: 0   Comments: 0

let f(α) =∫_0 ^∞ ((cos(α(1+x^2 )))/(1+x^2 ))dx 1)determine a explicit form of f(α) 2) calculate ∫_0 ^∞ ((cos(2+2x^2 ))/(x^2 +1))dx

$${let}\:{f}\left(\alpha\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left(\alpha\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$\left.\mathrm{1}\right){determine}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left(\alpha\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left(\mathrm{2}+\mathrm{2}{x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} \:+\mathrm{1}}{dx} \\ $$

Question Number 69374    Answers: 0   Comments: 1

let S_n =Σ_(k=1) ^n (((−1)^k )/k) 1) calculate S_n interms of n 2) find lim_(n→+∞) S_n

$${let}\:{S}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\left(−\mathrm{1}\right)^{{k}} }{{k}} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{S}_{{n}} \:{interms}\:{of}\:{n} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} \:{S}_{{n}} \\ $$

  Pg 1402      Pg 1403      Pg 1404      Pg 1405      Pg 1406      Pg 1407      Pg 1408      Pg 1409      Pg 1410      Pg 1411   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com