Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1406

Question Number 68122    Answers: 1   Comments: 1

Question Number 68116    Answers: 1   Comments: 1

∫(dx/(sin2x−sec(x)))

$$\int\frac{{dx}}{{sin}\mathrm{2}{x}−{sec}\left({x}\right)} \\ $$

Question Number 68113    Answers: 1   Comments: 0

Solve y.y′′ = 3(y′)^2

$$\mathrm{Solve} \\ $$$${y}.{y}''\:=\:\mathrm{3}\left({y}'\right)^{\mathrm{2}} \\ $$

Question Number 68110    Answers: 0   Comments: 2

Question Number 68100    Answers: 0   Comments: 4

Find K=∫_0 ^1 ((ln(1−t+t^2 ))/t) dt

$${Find}\:\:{K}=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{ln}\left(\mathrm{1}−{t}+{t}^{\mathrm{2}} \right)}{{t}}\:{dt}\:\:\:\:\: \\ $$

Question Number 68096    Answers: 0   Comments: 0

Question Number 68095    Answers: 1   Comments: 0

∫(√x)/1+((x ))^(1/3) dx

$$\int\sqrt{{x}}/\mathrm{1}+\sqrt[{\mathrm{3}}]{{x}\:}\:{dx} \\ $$

Question Number 68094    Answers: 1   Comments: 0

∫dx/(((π+e)^x^2 ))^(1/x)

$$\int{dx}/\sqrt[{{x}}]{\left(\pi+{e}\right)^{{x}^{\mathrm{2}} } }\: \\ $$

Question Number 68092    Answers: 0   Comments: 4

Question Number 68087    Answers: 0   Comments: 2

Hello friends! I ask name of a high level book of integral calculus.

$${Hello}\:{friends}!\:{I}\:{ask}\:{name}\:{of}\:{a}\:{high} \\ $$$${level}\:{book}\:{of}\:{integral}\:{calculus}. \\ $$

Question Number 68079    Answers: 1   Comments: 0

Question Number 68078    Answers: 1   Comments: 0

Question Number 68077    Answers: 0   Comments: 0

Question Number 68073    Answers: 0   Comments: 1

A straight rod AB which is 60cm long,is in equilibrum when horizontal and supported at a point C,10cm from A, with masses 6kg and 1kg attached to the rod at A and B respectively.It is also in equilibrum and horizontal when supported at another pivott at its mid- point,with masses of 2kg and 5kg attatched at A and B respectively.Find the mass of the rod amd its C.G from point A.

$$\:{A}\:{straight}\:{rod}\:{AB}\:{which}\:{is}\:\mathrm{60}{cm}\:{long},{is} \\ $$$${in}\:{equilibrum}\:{when}\:{horizontal}\:{and} \\ $$$${supported}\:{at}\:{a}\:{point}\:{C},\mathrm{10}{cm}\:{from}\:{A}, \\ $$$${with}\:{masses}\:\mathrm{6}{kg}\:{and}\:\mathrm{1}{kg}\:{attached}\:{to}\:{the} \\ $$$${rod}\:{at}\:{A}\:{and}\:{B}\:{respectively}.{It}\:{is}\:{also}\:{in} \\ $$$${equilibrum}\:{and}\:{horizontal}\:{when}\: \\ $$$${supported}\:{at}\:{another}\:{pivott}\:{at}\:{its}\:{mid}- \\ $$$${point},{with}\:{masses}\:{of}\:\mathrm{2}{kg}\:{and}\:\mathrm{5}{kg}\: \\ $$$${attatched}\:{at}\:{A}\:{and}\:{B}\:{respectively}.{Find} \\ $$$${the}\:{mass}\:{of}\:{the}\:{rod}\:{amd}\:{its}\:{C}.{G}\:{from} \\ $$$${point}\:{A}. \\ $$

Question Number 68068    Answers: 0   Comments: 2

find e^(1/ln2) =?

$${find}\:{e}^{\mathrm{1}/{ln}\mathrm{2}} \:\:=? \\ $$

Question Number 68062    Answers: 0   Comments: 1

Question Number 68052    Answers: 0   Comments: 0

Question Number 68046    Answers: 1   Comments: 0

Question Number 68041    Answers: 0   Comments: 1

Question Number 68040    Answers: 1   Comments: 2

find f(a) =∫_1 ^2 arctan(x+(a/x))dx and calculate f^′ (a) at form of integral

$${find}\:{f}\left({a}\right)\:=\int_{\mathrm{1}} ^{\mathrm{2}} {arctan}\left({x}+\frac{{a}}{{x}}\right){dx}\:\:{and} \\ $$$${calculate}\:{f}^{'} \left({a}\right)\:{at}\:{form}\:{of}\:{integral} \\ $$

Question Number 68039    Answers: 0   Comments: 1

find ∫ arctan(x+(1/x))dx

$${find}\:\int\:\:{arctan}\left({x}+\frac{\mathrm{1}}{{x}}\right){dx} \\ $$

Question Number 68038    Answers: 0   Comments: 1

calculate ∫_0 ^∞ ((arctan(x^2 −1))/(x^2 +4))dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left({x}^{\mathrm{2}} −\mathrm{1}\right)}{{x}^{\mathrm{2}} \:+\mathrm{4}}{dx} \\ $$

Question Number 68037    Answers: 1   Comments: 0

find ∫ ((x^2 dx)/((x^3 −8)(x^4 +1)))

$${find}\:\int\:\:\:\frac{{x}^{\mathrm{2}} {dx}}{\left({x}^{\mathrm{3}} −\mathrm{8}\right)\left({x}^{\mathrm{4}} \:+\mathrm{1}\right)} \\ $$

Question Number 68036    Answers: 0   Comments: 1

let f(x) =cos(αx) ,2π periodic developp f at fourier serie. α ∈ R−Z

$${let}\:{f}\left({x}\right)\:={cos}\left(\alpha{x}\right)\:\:,\mathrm{2}\pi\:{periodic}\:\:\:{developp}\:{f}\:{at}\:{fourier}\:{serie}. \\ $$$$\alpha\:\in\:{R}−{Z} \\ $$

Question Number 68035    Answers: 0   Comments: 4

let f(x) =e^(−iαx) ,2π periodic .developp f at fourier serie.

$${let}\:{f}\left({x}\right)\:={e}^{−{i}\alpha{x}} \:\:\:\:,\mathrm{2}\pi\:\:{periodic}\:\:.{developp}\:{f}\:{at}\:{fourier}\:{serie}. \\ $$

Question Number 68034    Answers: 0   Comments: 1

let f(x) =e^(−x) , 2π periodic developp f at fourier serie.

$${let}\:{f}\left({x}\right)\:={e}^{−{x}} \:\:,\:\:\mathrm{2}\pi\:\:{periodic}\:\:{developp}\:{f}\:{at}\:{fourier}\:{serie}. \\ $$

  Pg 1401      Pg 1402      Pg 1403      Pg 1404      Pg 1405      Pg 1406      Pg 1407      Pg 1408      Pg 1409      Pg 1410   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com