Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1405

Question Number 71696    Answers: 1   Comments: 0

The side of a square is measured to be 12cm long cofrect to the nearest cm. Find the maximum absolute error and the maximum percentage error for (a) The length of the square (Answer: 0.5cm, 4.17%) (b) The area of the square. (Answer: 12.25cm, 8.5%)

$$\mathrm{The}\:\mathrm{side}\:\mathrm{of}\:\mathrm{a}\:\mathrm{square}\:\mathrm{is}\:\mathrm{measured}\:\mathrm{to}\:\mathrm{be}\:\:\mathrm{12cm}\:\mathrm{long}\:\mathrm{cofrect} \\ $$$$\mathrm{to}\:\mathrm{the}\:\mathrm{nearest}\:\:\mathrm{cm}.\:\:\mathrm{Find}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{absolute}\:\mathrm{error} \\ $$$$\mathrm{and}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{percentage}\:\mathrm{error}\:\mathrm{for} \\ $$$$\left(\mathrm{a}\right)\:\:\:\:\mathrm{The}\:\mathrm{length}\:\mathrm{of}\:\mathrm{the}\:\mathrm{square}\:\:\:\:\:\left(\mathrm{Answer}:\:\:\mathrm{0}.\mathrm{5cm},\:\:\mathrm{4}.\mathrm{17\%}\right) \\ $$$$\left(\mathrm{b}\right)\:\:\:\:\mathrm{The}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{square}.\:\:\:\:\:\:\left(\mathrm{Answer}:\:\:\:\:\mathrm{12}.\mathrm{25cm},\:\:\:\mathrm{8}.\mathrm{5\%}\right) \\ $$

Question Number 69681    Answers: 2   Comments: 2

Question Number 69680    Answers: 2   Comments: 0

f(x)=x^(sinx) , 0<x<(π/2) find f′(x)

$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{x}^{\mathrm{sinx}} \:\:,\:\mathrm{0}<\mathrm{x}<\frac{\pi}{\mathrm{2}}\:\:\:\mathrm{find}\:\mathrm{f}'\left(\mathrm{x}\right) \\ $$

Question Number 71918    Answers: 2   Comments: 2

If Cosθ=((x cosβ − y)/(x − y cosβ)) then prove that, tan(θ/2) =(√(((x−y)/(x+y)) )) tan(β/2)

$$\mathrm{If}\:\mathrm{Cos}\theta=\frac{\mathrm{x}\:\mathrm{cos}\beta\:−\:\mathrm{y}}{\mathrm{x}\:−\:\mathrm{y}\:\mathrm{cos}\beta}\:\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that},\:\mathrm{tan}\frac{\theta}{\mathrm{2}}\:=\sqrt{\frac{\mathrm{x}−\mathrm{y}}{\mathrm{x}+\mathrm{y}}\:}\:\mathrm{tan}\frac{\beta}{\mathrm{2}} \\ $$

Question Number 69667    Answers: 1   Comments: 0

Question Number 69665    Answers: 1   Comments: 1

Question Number 69662    Answers: 1   Comments: 0

prove that ((2x^3 −x^2 −2x+1)/(x^3 +1)) + ((x^3 +1)/(x^4 −2x^3 +3x^2 −2x+1)) = 2

$${prove}\:{that} \\ $$$$ \\ $$$$\frac{\mathrm{2}{x}^{\mathrm{3}} −{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{1}}{{x}^{\mathrm{3}} +\mathrm{1}}\:+\:\frac{{x}^{\mathrm{3}} +\mathrm{1}}{{x}^{\mathrm{4}} −\mathrm{2}{x}^{\mathrm{3}} +\mathrm{3}{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{1}}\:=\:\mathrm{2} \\ $$

Question Number 69645    Answers: 1   Comments: 0

Question Number 69644    Answers: 2   Comments: 0

Question Number 69643    Answers: 1   Comments: 0

Question Number 69641    Answers: 0   Comments: 0

Solve arctg(1−x) + (1/(arcctg(1+x))) = (𝛑/4)

$$\boldsymbol{{Solve}}\:\:\boldsymbol{{arctg}}\left(\mathrm{1}−\boldsymbol{{x}}\right)\:+\:\frac{\mathrm{1}}{\boldsymbol{{arcctg}}\left(\mathrm{1}+\boldsymbol{{x}}\right)}\:=\:\frac{\boldsymbol{\pi}}{\mathrm{4}} \\ $$

Question Number 69637    Answers: 1   Comments: 0

...now try this one: ∫(dx/(x^(1/2) −x^(1/3) −x^(1/6) ))=

$$...\mathrm{now}\:\mathrm{try}\:\mathrm{this}\:\mathrm{one}: \\ $$$$\int\frac{{dx}}{{x}^{\mathrm{1}/\mathrm{2}} −{x}^{\mathrm{1}/\mathrm{3}} −{x}^{\mathrm{1}/\mathrm{6}} }= \\ $$

Question Number 69623    Answers: 1   Comments: 0

∫(1/((√x) + (x)^(1/3) )) dx

$$\int\frac{\mathrm{1}}{\sqrt{{x}}\:+\:\sqrt[{\mathrm{3}}]{{x}}}\:{dx} \\ $$

Question Number 69616    Answers: 0   Comments: 4

Question Number 69606    Answers: 0   Comments: 0

Question Number 69603    Answers: 1   Comments: 0

∫ x^3 arcsinxdx

$$\int\:{x}^{\mathrm{3}} {arcsinxdx} \\ $$

Question Number 69597    Answers: 1   Comments: 1

Question Number 69594    Answers: 1   Comments: 0

Question Number 69593    Answers: 1   Comments: 2

Question Number 69576    Answers: 1   Comments: 1

∫_(−2) ^( 2) (x^3 cos(x/2)+(1/2))(√(4−x^2 ))dx

$$\int_{−\mathrm{2}} ^{\:\mathrm{2}} \left({x}^{\mathrm{3}} {cos}\frac{{x}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\right)\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }{dx} \\ $$

Question Number 69574    Answers: 1   Comments: 0

Question Number 69573    Answers: 0   Comments: 1

Question Number 69572    Answers: 1   Comments: 0

Question Number 69571    Answers: 1   Comments: 0

Question Number 69570    Answers: 0   Comments: 0

Question Number 69569    Answers: 2   Comments: 0

  Pg 1400      Pg 1401      Pg 1402      Pg 1403      Pg 1404      Pg 1405      Pg 1406      Pg 1407      Pg 1408      Pg 1409   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com