Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1405

Question Number 61530    Answers: 0   Comments: 5

let U_n =∫_0 ^∞ (x^(−2n) /(1+x^4 )) dx with n integr natural and n≥1 1) calculate U_n interms of n 2) find lim_(n→+∞) n^2 U_n 3) study the serie Σ U_n

$${let}\:{U}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{x}^{−\mathrm{2}{n}} }{\mathrm{1}+{x}^{\mathrm{4}} }\:{dx}\:\:\:{with}\:{n}\:{integr}\:{natural}\:{and}\:\:\:{n}\geqslant\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{U}_{{n}} \:{interms}\:{of}\:{n} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} \:{n}^{\mathrm{2}} \:{U}_{{n}} \\ $$$$\left.\mathrm{3}\right)\:{study}\:{the}\:{serie}\:\Sigma\:{U}_{{n}} \\ $$

Question Number 61529    Answers: 0   Comments: 0

find ∫_0 ^∞ x^2 e^(−zx^2 ) dx with z from C

$${find}\:\int_{\mathrm{0}} ^{\infty} \:\:{x}^{\mathrm{2}} {e}^{−{zx}^{\mathrm{2}} } {dx}\:\:{with}\:{z}\:{from}\:{C}\: \\ $$

Question Number 61528    Answers: 0   Comments: 4

find ∫_0 ^∞ cos(zx^2 )dx with z ∈ C .

$${find}\:\:\int_{\mathrm{0}} ^{\infty} \:\:{cos}\left({zx}^{\mathrm{2}} \right){dx}\:{with}\:{z}\:\in\:{C}\:. \\ $$

Question Number 61526    Answers: 0   Comments: 0

Solve for n: D/A×{1−((P×((((1+i)^n ×i)/((1+i)^n −1))))/((P×((((1+i)^r ×i)/((1+i)^r −1))))−(R/i)×[((1/n)+i)×((((1+i)^r ×i)/((1+i)^r −1)))−((1/n)+i)×((((1+i)^n ×i)/((1+i)^n −1)))]))}−1=0

$${Solve}\:{for}\:{n}:\:{D}/{A}×\left\{\mathrm{1}−\frac{{P}×\left(\frac{\left(\mathrm{1}+{i}\right)^{{n}} ×{i}}{\left(\mathrm{1}+{i}\right)^{{n}} −\mathrm{1}}\right)}{\left({P}×\left(\frac{\left(\mathrm{1}+{i}\right)^{{r}} ×{i}}{\left(\mathrm{1}+{i}\right)^{{r}} −\mathrm{1}}\right)\right)−\frac{{R}}{{i}}×\left[\left(\frac{\mathrm{1}}{{n}}+{i}\right)×\left(\frac{\left(\mathrm{1}+{i}\right)^{{r}} ×{i}}{\left(\mathrm{1}+{i}\right)^{{r}} −\mathrm{1}}\right)−\left(\frac{\mathrm{1}}{{n}}+{i}\right)×\left(\frac{\left(\mathrm{1}+{i}\right)^{{n}} ×{i}}{\left(\mathrm{1}+{i}\right)^{{n}} −\mathrm{1}}\right)\right]}\right\}−\mathrm{1}=\mathrm{0} \\ $$$$ \\ $$

Question Number 61522    Answers: 1   Comments: 0

I=∫((sin x.e^(cos x) −(sin x+cos x)e^((sin x+cos x)) )/(e^(2sin x) −2e^(sin x) +1))dx

$${I}=\int\frac{\mathrm{sin}\:{x}.{e}^{\mathrm{cos}\:{x}} −\left(\mathrm{sin}\:{x}+\mathrm{cos}\:{x}\right){e}^{\left(\mathrm{sin}\:{x}+\mathrm{cos}\:{x}\right)} }{{e}^{\mathrm{2sin}\:{x}} −\mathrm{2}{e}^{\mathrm{sin}\:{x}} +\mathrm{1}}{dx} \\ $$

Question Number 61521    Answers: 1   Comments: 0

Question Number 61520    Answers: 0   Comments: 0

Question Number 61495    Answers: 1   Comments: 7

Question Number 61511    Answers: 1   Comments: 0

cos^(−1) ((2x^2 −1)/(2x^2 )) + cos^(−1) ((x^2 −2)/x^2 )=120°=((2π)/3) Find x

$${cos}^{−\mathrm{1}} \:\frac{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}{x}^{\mathrm{2}} }\:+\:{cos}^{−\mathrm{1}} \:\frac{{x}^{\mathrm{2}} −\mathrm{2}}{{x}^{\mathrm{2}} }=\mathrm{120}°=\frac{\mathrm{2}\pi}{\mathrm{3}} \\ $$$$\mathrm{Find}\:\:{x} \\ $$

Question Number 61510    Answers: 0   Comments: 0

S_1 =Σ_(k=1) ^n (√((16n−16k)(16n+16k))) S_2 =Σ_(k=1) ^n (√((16k−16)(16k+16))) lim_(n→∞) ((S_1 +S_2 )/n^2 )=?

$${S}_{\mathrm{1}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\sqrt{\left(\mathrm{16}{n}−\mathrm{16}{k}\right)\left(\mathrm{16}{n}+\mathrm{16}{k}\right)} \\ $$$${S}_{\mathrm{2}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\sqrt{\left(\mathrm{16}{k}−\mathrm{16}\right)\left(\mathrm{16}{k}+\mathrm{16}\right)} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{{S}_{\mathrm{1}} +{S}_{\mathrm{2}} }{{n}^{\mathrm{2}} }=? \\ $$

Question Number 61490    Answers: 0   Comments: 10

(√(a−(√(a+x))))+(√(a+(√(a−x))))=2x this is the solution Sir Aifour and me found trivial solution a=x=0 a, x ∈R x=((√2)/8)(r+(√(r^2 +4)))(√(2(4a−1)−r^2 −r(√(r^2 +4)))) with r=−2(√((4a−3)/3))sin ((1/3)arcsin ((3(√3))/((4a−3)^(3/2) ))) no solution for a<a_0 with a_0 ≈1.509830340886

$$\sqrt{{a}−\sqrt{{a}+{x}}}+\sqrt{{a}+\sqrt{{a}−{x}}}=\mathrm{2}{x} \\ $$$$\mathrm{this}\:\mathrm{is}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{Sir}\:\mathrm{Aifour}\:\mathrm{and}\:\mathrm{me}\:\mathrm{found} \\ $$$$ \\ $$$$\mathrm{trivial}\:\mathrm{solution}\:{a}={x}=\mathrm{0} \\ $$$$ \\ $$$${a},\:{x}\:\in\mathbb{R} \\ $$$$ \\ $$$${x}=\frac{\sqrt{\mathrm{2}}}{\mathrm{8}}\left({r}+\sqrt{{r}^{\mathrm{2}} +\mathrm{4}}\right)\sqrt{\mathrm{2}\left(\mathrm{4}{a}−\mathrm{1}\right)−{r}^{\mathrm{2}} −{r}\sqrt{{r}^{\mathrm{2}} +\mathrm{4}}} \\ $$$$\mathrm{with} \\ $$$${r}=−\mathrm{2}\sqrt{\frac{\mathrm{4}{a}−\mathrm{3}}{\mathrm{3}}}\mathrm{sin}\:\left(\frac{\mathrm{1}}{\mathrm{3}}\mathrm{arcsin}\:\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\left(\mathrm{4}{a}−\mathrm{3}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }\right) \\ $$$$\mathrm{no}\:\mathrm{solution}\:\mathrm{for}\:{a}<{a}_{\mathrm{0}} \:\mathrm{with}\:{a}_{\mathrm{0}} \approx\mathrm{1}.\mathrm{509830340886} \\ $$

Question Number 61565    Answers: 2   Comments: 3

x(y+1) + y(x−1) = 12 x(√y) + y(√x) = 21 x, y ∈ R x + y = ?

$${x}\left({y}+\mathrm{1}\right)\:+\:{y}\left({x}−\mathrm{1}\right)\:\:=\:\:\mathrm{12} \\ $$$${x}\sqrt{{y}}\:\:+\:\:{y}\sqrt{{x}}\:\:\:\:=\:\:\mathrm{21} \\ $$$${x},\:{y}\:\:\in\:\:\mathbb{R} \\ $$$${x}\:+\:{y}\:\:=\:\:? \\ $$

Question Number 61479    Answers: 3   Comments: 1

Solve for x: ((6(√(2x)))/(x − 1)) + ((5(√(x − 1)))/(2x)) = 13

$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{x}:\:\:\:\:\:\:\:\frac{\mathrm{6}\sqrt{\mathrm{2x}}}{\mathrm{x}\:−\:\mathrm{1}}\:+\:\frac{\mathrm{5}\sqrt{\mathrm{x}\:−\:\mathrm{1}}}{\mathrm{2x}}\:\:\:=\:\:\mathrm{13} \\ $$

Question Number 61470    Answers: 1   Comments: 0

Is there any other solution besides {x=a,y=b} or {x=b,y=a} of the following system of equations x+y=a+b ∧ x^7 +y^7 =a^7 +b^7 ?

$$\mathrm{Is}\:\mathrm{there}\:\mathrm{any}\:\mathrm{other}\:\mathrm{solution}\:\mathrm{besides} \\ $$$$\left\{\mathrm{x}=\mathrm{a},\mathrm{y}=\mathrm{b}\right\}\:\mathrm{or}\:\left\{\mathrm{x}=\mathrm{b},\mathrm{y}=\mathrm{a}\right\}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{following}\:\mathrm{system}\:\mathrm{of}\:\mathrm{equations} \\ $$$$\:\:\:\:\mathrm{x}+\mathrm{y}=\mathrm{a}+\mathrm{b}\:\:\wedge\:\mathrm{x}^{\mathrm{7}} +\mathrm{y}^{\mathrm{7}} =\mathrm{a}^{\mathrm{7}} +\mathrm{b}^{\mathrm{7}} \:\:? \\ $$$$ \\ $$

Question Number 61465    Answers: 1   Comments: 1

∫_0 ^(2π) (1/(a^2 cos^2 (t)+b^2 sin^2 (t)))dt=((2π)/(ab))?

$$\int_{\mathrm{0}} ^{\mathrm{2}\pi} \frac{\mathrm{1}}{{a}^{\mathrm{2}} {cos}^{\mathrm{2}} \left({t}\right)+{b}^{\mathrm{2}} {sin}^{\mathrm{2}} \left({t}\right)}{dt}=\frac{\mathrm{2}\pi}{{ab}}? \\ $$

Question Number 61461    Answers: 1   Comments: 0

Question Number 61453    Answers: 1   Comments: 0

find ∫_0 ^1 ((ln(x)ln(1+x))/x)dx

$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left({x}\right){ln}\left(\mathrm{1}+{x}\right)}{{x}}{dx} \\ $$

Question Number 61451    Answers: 0   Comments: 0

Question Number 61449    Answers: 1   Comments: 1

Question Number 61425    Answers: 0   Comments: 1

Question Number 61424    Answers: 1   Comments: 0

Question Number 61412    Answers: 0   Comments: 2

Find the multinomial coefficient: ((( 9)),((3, 5, 1, 0)) )

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{multinomial}\:\mathrm{coefficient}:\:\:\:\:\:\begin{pmatrix}{\:\:\:\:\:\:\:\:\:\mathrm{9}}\\{\mathrm{3},\:\:\mathrm{5},\:\:\mathrm{1},\:\:\mathrm{0}}\end{pmatrix} \\ $$

Question Number 61408    Answers: 1   Comments: 0

∫_0 ^π (x/(tan^2 (x)−1)) dx

$$\int_{\mathrm{0}} ^{\pi} \frac{{x}}{{tan}^{\mathrm{2}} \left({x}\right)−\mathrm{1}}\:{dx} \\ $$

Question Number 61402    Answers: 0   Comments: 0

Question Number 61391    Answers: 0   Comments: 2

what is the best book for learning advanced calculus ?

$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{best}\:\mathrm{book}\:\mathrm{for}\:\mathrm{learning}\:\mathrm{advanced} \\ $$$$\mathrm{calculus}\:? \\ $$

Question Number 61388    Answers: 0   Comments: 5

calculate ∫_0 ^1 ((sin(lnx))/(lnx)) dx .

$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{sin}\left({lnx}\right)}{{lnx}}\:{dx}\:. \\ $$

  Pg 1400      Pg 1401      Pg 1402      Pg 1403      Pg 1404      Pg 1405      Pg 1406      Pg 1407      Pg 1408      Pg 1409   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com