the 2 formulas for solving ∫(dx/(x^3 +px+q)) with
“nasty” solutions of x^3 +px+q=0 with p, q ∈R
case 1
D=(p^3 /(27))+(q^2 /4)>0 ⇒ x^3 +px+q=0 has got 1 real
and 2 conjugated complex solutions
u=((−(q/2)+(√((p^3 /(27))+(q^2 /4)))))^(1/3) ∧v=((−(q/2)−p(√((p^3 /(27))+(q^2 /4)))))^(1/3)
x_1 =u+v
x_2 =(−(1/2)+((√3)/2)i)u+(−(1/2)−((√3)/2)i)v
x_3 =(−(1/2)−((√3)/2)i)u+(−(1/2)+((√3)/2)i)v
α=u+v∧β=((√3)/2)(u−v) ⇔ u=(α/2)+(β/(√3))∧v=(α/2)−(β/(√3))
x_1 =α
x_2 =−(α/2)+βi
x_3 =−(α/2)−βi
∫(dx/(x^3 +px+q))=∫(dx/((x−α)(x^2 +αx+((α^2 +4β^2 )/4))))=
=(1/(9α^2 +4β^2 ))(∫(dx/((x−α)))−∫((x+2α)/(x^2 +αx+((α^2 +4β^2 )/4)))dx)=
=(1/(9α^2 +4β^2 ))(ln ∣x−α∣ −(1/2)ln ((2x+α)^2 +4β^2 ) −((3α)/(2β))arctan ((2x+α)/(2β))) +C
...now calculate the constants
case 2
D=(p^3 /(27))+(q^2 /4)<0 ⇒ x^3 +px+q=0 has got 3 real solutions
x_k =(2/3)(√(−3p)) sin (((2π)/3)k+(1/3)arcsin ((3(√3)q)/(2(√(−p^3 ))))) with k=0, 1, 2
let x_1 =α, x_2 =β, x_3 =γ
∫(dx/(x^3 +px+q))=∫(dx/((x−α)(x−β)(x−γ)))=
=(1/((α−β)(α−γ)))∫(dx/(x−α))+(1/((β−α)(β−γ)))∫(dx/(x−β))+(1/((γ−α)(γ−β)))∫(dx/(x−γ))=
=((ln ∣x−α∣)/((α−β)(α−γ)))+((ln ∣x−β∣)/((β−α)(β−γ)))+((ln ∣x−γ∣)/((γ−α)(γ−β)))+C
...now calculate the constants
|