Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1404

Question Number 71617    Answers: 0   Comments: 0

One person drags a 10 kilogram sandbag at a distance of 8 meters employing a horizontal force of 90 N. Then lift the sandbag at a height of 1.5 meters, calculate the total work done by the person.

$${One}\:{person}\:{drags}\:{a}\:\mathrm{10}\:{kilogram} \\ $$$${sandbag}\:{at}\:{a}\:{distance}\:{of}\:\mathrm{8}\:{meters} \\ $$$${employing}\:{a}\:{horizontal}\:{force}\:{of} \\ $$$$\mathrm{90}\:{N}.\:{Then}\:{lift}\:{the}\:{sandbag}\:{at}\:{a} \\ $$$${height}\:{of}\:\mathrm{1}.\mathrm{5}\:{meters},\:{calculate}\:{the} \\ $$$${total}\:{work}\:{done}\:{by}\:{the}\:{person}. \\ $$

Question Number 71616    Answers: 0   Comments: 0

A boy leaves a 0.4 kilogram stone from the top of a 25 meter−high tower. Given g=10 m/s^2 , calvulate the total work done by the force of the weight until the stone hits the ground

$${A}\:{boy}\:{leaves}\:{a}\:\mathrm{0}.\mathrm{4}\:{kilogram}\:{stone}\: \\ $$$${from}\:{the}\:{top}\:{of}\:{a}\:\mathrm{25}\:{meter}−{high}\: \\ $$$${tower}.\:{Given}\:{g}=\mathrm{10}\:{m}/{s}^{\mathrm{2}} ,\:{calvulate} \\ $$$${the}\:{total}\:{work}\:{done}\:{by}\:{the}\:{force}\:{of}\:{the} \\ $$$${weight}\:{until}\:{the}\:{stone}\:{hits}\:{the}\:{ground} \\ $$

Question Number 71611    Answers: 2   Comments: 2

Question Number 71593    Answers: 1   Comments: 0

Question Number 71578    Answers: 0   Comments: 0

Question Number 71572    Answers: 2   Comments: 1

Question Number 71570    Answers: 1   Comments: 0

Solve: (2x + x^2 )y′′ − 2(1 + x)y′ + 2y = 0 Given y = x^2 is a solution.

$$\mathrm{Solve}:\:\:\:\:\:\left(\mathrm{2x}\:+\:\mathrm{x}^{\mathrm{2}} \right)\mathrm{y}''\:−\:\mathrm{2}\left(\mathrm{1}\:+\:\mathrm{x}\right)\mathrm{y}'\:+\:\mathrm{2y}\:\:=\:\:\mathrm{0} \\ $$$$\mathrm{Given}\:\:\mathrm{y}\:=\:\mathrm{x}^{\mathrm{2}} \:\:\mathrm{is}\:\mathrm{a}\:\mathrm{solution}. \\ $$

Question Number 71564    Answers: 1   Comments: 2

(z−i)^4 =−7+24i

$$\left(\mathrm{z}−\mathrm{i}\right)^{\mathrm{4}} =−\mathrm{7}+\mathrm{24i} \\ $$

Question Number 71563    Answers: 2   Comments: 0

find maximum and minimum cos x+(√3) sin x for (π/6)≤x≤π

$$\mathrm{find}\:\mathrm{maximum}\:\mathrm{and}\:\mathrm{minimum} \\ $$$$\mathrm{cos}\:{x}+\sqrt{\mathrm{3}}\:\mathrm{sin}\:{x} \\ $$$${for} \\ $$$$\frac{\pi}{\mathrm{6}}\leqslant{x}\leqslant\pi \\ $$

Question Number 71560    Answers: 0   Comments: 0

Question Number 71551    Answers: 1   Comments: 0

whats the mean R^(++) ?and R^(−−) ?

$${whats}\:{the}\:{mean}\:{R}^{++} \:?{and}\:{R}^{−−} ? \\ $$

Question Number 71550    Answers: 1   Comments: 0

Question Number 71548    Answers: 1   Comments: 0

let f:U⊂R^n →R^p be an application where U is an open set prove that ∀x∈U,∃h∈R^n such as x+h∈U

$$\mathrm{let}\:\mathrm{f}:\boldsymbol{\mathrm{U}}\subset\mathbb{R}^{\mathrm{n}} \rightarrow\mathbb{R}^{\mathrm{p}} \:\mathrm{be}\:\mathrm{an}\:\mathrm{application} \\ $$$$\mathrm{where}\:\boldsymbol{\mathrm{U}}\:\mathrm{is}\:\mathrm{an}\:\mathrm{open}\:\mathrm{set} \\ $$$$\mathrm{prove}\:\mathrm{that}\:\forall\mathrm{x}\in\boldsymbol{{U}},\exists\mathrm{h}\in\mathbb{R}^{\mathrm{n}} \mathrm{such}\:\mathrm{as} \\ $$$$\mathrm{x}+\mathrm{h}\in\boldsymbol{{U}} \\ $$

Question Number 71538    Answers: 2   Comments: 1

Question Number 71534    Answers: 2   Comments: 0

a number consists of digits 1 and 2. the sum of its digits is 2018. if the number is multiplied with 5, the sum of the digits will be 10000. find how many digits this number has.

$${a}\:{number}\:{consists}\:{of}\:{digits}\:\mathrm{1}\:{and}\:\mathrm{2}. \\ $$$${the}\:{sum}\:{of}\:{its}\:{digits}\:{is}\:\mathrm{2018}. \\ $$$${if}\:{the}\:{number}\:{is}\:{multiplied}\:{with}\:\mathrm{5},\: \\ $$$${the}\:{sum}\:{of}\:{the}\:{digits}\:{will}\:{be}\:\mathrm{10000}. \\ $$$${find}\:{how}\:{many}\:{digits}\:{this}\:{number} \\ $$$${has}. \\ $$

Question Number 71533    Answers: 1   Comments: 0

Three interior angles of a nonagon are equal and the sum of the other six is 1050° Find the size of one of the equal angles.

$$\mathrm{Three}\:\mathrm{interior}\:\mathrm{angles}\:\mathrm{of}\:\mathrm{a}\:\mathrm{nonagon}\:\mathrm{are} \\ $$$$\mathrm{equal}\:\mathrm{and}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{other}\:\mathrm{six}\:\mathrm{is}\:\mathrm{1050}° \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{size}\:\mathrm{of}\:\mathrm{one}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equal}\:\mathrm{angles}. \\ $$

Question Number 71518    Answers: 1   Comments: 8

Express (√(28)) as continued fraction

$$\mathrm{Express}\:\:\sqrt{\mathrm{28}}\:\:\mathrm{as}\:\mathrm{continued}\:\mathrm{fraction} \\ $$

Question Number 71517    Answers: 1   Comments: 0

Question Number 71516    Answers: 1   Comments: 0

5y′′=(1+y′^2 )^(3/2) please solve the differtial equation

$$\mathrm{5y}''=\left(\mathrm{1}+\mathrm{y}'^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} \\ $$$$\mathrm{please}\:\mathrm{solve}\:\mathrm{the}\:\mathrm{differtial}\:\mathrm{equation} \\ $$

Question Number 71508    Answers: 1   Comments: 2

montrer que:∀a,b∈R ona 2∣ab∣≤a^2 +b^2 Endeduire que ∀x_1 ,...,x_n ∈R on a: (Σ_(i=1) ^n ∣x_i ∣)^2 ≤nΣ_(i=1) ^n x_i ^2 please i need help

$$\mathrm{montrer}\:\mathrm{que}:\forall\mathrm{a},\mathrm{b}\in\mathbb{R}\:\mathrm{ona} \\ $$$$\mathrm{2}\mid\mathrm{ab}\mid\leqslant\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} \\ $$$$\mathrm{Endeduire}\:\mathrm{que}\:\forall\mathrm{x}_{\mathrm{1}} ,...,\mathrm{x}_{\mathrm{n}} \in\mathbb{R}\:\mathrm{on}\:\mathrm{a}: \\ $$$$\left(\underset{\mathrm{i}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\mid\mathrm{x}_{\mathrm{i}} \mid\right)^{\mathrm{2}} \leqslant\mathrm{n}\underset{\mathrm{i}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\mathrm{x}_{\mathrm{i}} ^{\mathrm{2}} \\ $$$$\:\:\:\:\:\boldsymbol{\mathrm{please}}\:\boldsymbol{\mathrm{i}}\:\boldsymbol{\mathrm{need}}\:\boldsymbol{\mathrm{help}} \\ $$

Question Number 71499    Answers: 1   Comments: 1

Question Number 71490    Answers: 2   Comments: 2

Question Number 71506    Answers: 1   Comments: 1

Question Number 71513    Answers: 0   Comments: 2

Question Number 71448    Answers: 0   Comments: 1

find the domain f(x)=(1/(sin(sin(x))))

$${find}\:{the}\:{domain} \\ $$$$ \\ $$$${f}\left({x}\right)=\frac{\mathrm{1}}{{sin}\left({sin}\left({x}\right)\right)} \\ $$

Question Number 71673    Answers: 1   Comments: 1

  Pg 1399      Pg 1400      Pg 1401      Pg 1402      Pg 1403      Pg 1404      Pg 1405      Pg 1406      Pg 1407      Pg 1408   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com