Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1403

Question Number 71423    Answers: 0   Comments: 7

Question Number 71421    Answers: 1   Comments: 1

Question Number 71420    Answers: 0   Comments: 0

Question Number 71410    Answers: 1   Comments: 0

Question Number 71406    Answers: 0   Comments: 6

Hello Solve (x^2 )^(1/3) −3((x(x−1)))^(1/3) +2((x−1))^(1/3) =0

$$\mathrm{Hello}\: \\ $$$$\mathrm{Solve}\:\sqrt[{\mathrm{3}}]{\mathrm{x}^{\mathrm{2}} }−\mathrm{3}\sqrt[{\mathrm{3}}]{\mathrm{x}\left(\mathrm{x}−\mathrm{1}\right)}+\mathrm{2}\sqrt[{\mathrm{3}}]{\mathrm{x}−\mathrm{1}}=\mathrm{0} \\ $$

Question Number 71428    Answers: 1   Comments: 0

Question Number 71396    Answers: 0   Comments: 0

Question Number 71371    Answers: 0   Comments: 1

Question Number 71360    Answers: 0   Comments: 2

lim_(x→0) ((1−(√(1+2x^4 ))cos ((√2)x^2 ))/(x^5 ln (1−2x^3 )))

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}−\sqrt{\mathrm{1}+\mathrm{2x}^{\mathrm{4}} }\mathrm{cos}\:\left(\sqrt{\mathrm{2}}\mathrm{x}^{\mathrm{2}} \right)}{\mathrm{x}^{\mathrm{5}} \mathrm{ln}\:\left(\mathrm{1}−\mathrm{2x}^{\mathrm{3}} \right)} \\ $$

Question Number 71348    Answers: 0   Comments: 3

Question Number 71327    Answers: 2   Comments: 0

Question Number 71326    Answers: 2   Comments: 0

(−64)^(1/6) =?(Is there any short cut for mcq)

$$\left(−\mathrm{64}\right)^{\frac{\mathrm{1}}{\mathrm{6}}} =?\left(\boldsymbol{\mathrm{I}}\mathrm{s}\:\mathrm{there}\:\mathrm{any}\:\mathrm{short}\:\mathrm{cut}\:\mathrm{for}\:\mathrm{mcq}\right) \\ $$

Question Number 71317    Answers: 1   Comments: 3

lim_(x→0) ((∣2x−2∣−∣2x+2∣)/x)

$$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\:\frac{\mid\mathrm{2}{x}−\mathrm{2}\mid−\mid\mathrm{2}{x}+\mathrm{2}\mid}{{x}} \\ $$

Question Number 71315    Answers: 0   Comments: 0

please anyone check Q#71198

$$\:{please}\:{anyone}\:{check}\:{Q}#\mathrm{71198} \\ $$

Question Number 71314    Answers: 2   Comments: 1

find ∫_(−1) ^1 ln((√(1+x))+(√(1−x)))dx

$${find}\:\int_{−\mathrm{1}} ^{\mathrm{1}} {ln}\left(\sqrt{\mathrm{1}+{x}}+\sqrt{\mathrm{1}−{x}}\right){dx} \\ $$

Question Number 71311    Answers: 1   Comments: 1

Question Number 71301    Answers: 0   Comments: 0

let f(x)=∫_(1+x) ^(1+x^2 ) ((arctan(xt+2))/(x+t))dt calculate f^′ (x) 2)find lim_(x→0) f(x)

$${let}\:{f}\left({x}\right)=\int_{\mathrm{1}+{x}} ^{\mathrm{1}+{x}^{\mathrm{2}} } \:\frac{{arctan}\left({xt}+\mathrm{2}\right)}{{x}+{t}}{dt} \\ $$$${calculate}\:{f}^{'} \left({x}\right) \\ $$$$\left.\mathrm{2}\right){find}\:{lim}_{{x}\rightarrow\mathrm{0}} {f}\left({x}\right) \\ $$

Question Number 71362    Answers: 0   Comments: 0

please prove that lim_(x→0) ((x−sinx)/x^3 ) =(1/6) by using x=3y and sin3y=3siny−4sin^3 y

$$\boldsymbol{\mathrm{please}}\:\boldsymbol{{prove}}\:\boldsymbol{{that}} \\ $$$$\underset{\boldsymbol{{x}}\rightarrow\mathrm{0}} {\boldsymbol{{lim}}}\frac{\boldsymbol{{x}}−\boldsymbol{{sinx}}}{\boldsymbol{{x}}^{\mathrm{3}} }\:=\frac{\mathrm{1}}{\mathrm{6}}\:\boldsymbol{{by}}\:\boldsymbol{{using}} \\ $$$$\boldsymbol{{x}}=\mathrm{3}\boldsymbol{{y}}\:\boldsymbol{{and}}\: \\ $$$$\boldsymbol{{sin}}\mathrm{3}\boldsymbol{{y}}=\mathrm{3}\boldsymbol{{siny}}−\mathrm{4}\boldsymbol{{sin}}^{\mathrm{3}} \boldsymbol{{y}} \\ $$

Question Number 71294    Answers: 1   Comments: 1

solve in Z (1/x)+(1/y)=(1/p) with p∈P

$${solve}\:{in}\:\mathbb{Z}\:\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}=\frac{\mathrm{1}}{{p}}\:{with}\:{p}\in\mathbb{P} \\ $$

Question Number 71282    Answers: 4   Comments: 0

solve x(y+z)=27 y(z+x)=32 z(x+y)=35

$${solve} \\ $$$${x}\left({y}+{z}\right)=\mathrm{27} \\ $$$${y}\left({z}+{x}\right)=\mathrm{32} \\ $$$${z}\left({x}+{y}\right)=\mathrm{35} \\ $$

Question Number 71273    Answers: 0   Comments: 1

Question Number 71265    Answers: 0   Comments: 1

Question Number 71255    Answers: 1   Comments: 2

Question Number 71242    Answers: 3   Comments: 0

Given: (a/b) + (c/d) = (b/a) + (d/c) Show that, (a^2 /b^2 ) − (c^2 /d^2 ) = (b^2 /a^2 ) − (d^2 /c^2 )

$$\mathrm{Given}:\:\:\:\frac{\mathrm{a}}{\mathrm{b}}\:+\:\frac{\mathrm{c}}{\mathrm{d}}\:\:=\:\:\frac{\mathrm{b}}{\mathrm{a}}\:+\:\frac{\mathrm{d}}{\mathrm{c}} \\ $$$$\mathrm{Show}\:\mathrm{that},\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{a}^{\mathrm{2}} }{\mathrm{b}^{\mathrm{2}} }\:−\:\frac{\mathrm{c}^{\mathrm{2}} }{\mathrm{d}^{\mathrm{2}} }\:\:=\:\:\frac{\mathrm{b}^{\mathrm{2}} }{\mathrm{a}^{\mathrm{2}} }\:−\:\frac{\mathrm{d}^{\mathrm{2}} }{\mathrm{c}^{\mathrm{2}} } \\ $$

Question Number 71239    Answers: 2   Comments: 3

∫(1/(2cosx−5sinx−3))dx

$$\int\frac{\mathrm{1}}{\mathrm{2cosx}−\mathrm{5sinx}−\mathrm{3}}\mathrm{dx} \\ $$

Question Number 71235    Answers: 2   Comments: 1

sinh[ln (x + (√(1 + x^2 ))) ] ≡ A. 2x B. (1/x) C. x^2 D. x

$${sinh}\left[{ln}\:\left({x}\:+\:\sqrt{\mathrm{1}\:+\:{x}^{\mathrm{2}} }\right)\:\right]\:\equiv\: \\ $$$$ \\ $$$${A}.\:\:\mathrm{2}{x} \\ $$$${B}.\:\:\frac{\mathrm{1}}{{x}} \\ $$$${C}.\:\:{x}^{\mathrm{2}} \\ $$$${D}.\:\:{x} \\ $$

  Pg 1398      Pg 1399      Pg 1400      Pg 1401      Pg 1402      Pg 1403      Pg 1404      Pg 1405      Pg 1406      Pg 1407   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com