Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1403

Question Number 72497    Answers: 3   Comments: 0

if, cot θ+cosec θ=(1/(√3)) then find the value of θ where 0<θ≤2π.

$$\mathrm{if},\:\mathrm{cot}\:\theta+\mathrm{cosec}\:\theta=\frac{\mathrm{1}}{\sqrt{\mathrm{3}}}\:\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{value} \\ $$$$\mathrm{of}\:\theta\:\mathrm{where}\:\mathrm{0}<\theta\leqslant\mathrm{2}\pi. \\ $$

Question Number 72496    Answers: 2   Comments: 0

if a^x =b, b^y =c, c^z =a then prove that, xyz=0.

$$\mathrm{if}\:\mathrm{a}^{\mathrm{x}} =\mathrm{b},\:\mathrm{b}^{\mathrm{y}} =\mathrm{c},\:\mathrm{c}^{\mathrm{z}} =\mathrm{a}\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that}, \\ $$$$\mathrm{xyz}=\mathrm{0}. \\ $$

Question Number 72495    Answers: 0   Comments: 3

lim_(x→∞) (((lnx)/x))^((lnx)/x) =?

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\frac{{lnx}}{{x}}\right)^{\frac{{lnx}}{{x}}} =? \\ $$

Question Number 72494    Answers: 1   Comments: 1

((∫x(√(x^2 +5)) dx−3∫(x/(√(x^2 +5)))dx)/(∫((x(x^2 +2))/(√(x^2 +5))) dx))

$$\frac{\int{x}\sqrt{{x}^{\mathrm{2}} +\mathrm{5}}\:{dx}−\mathrm{3}\int\frac{{x}}{\sqrt{{x}^{\mathrm{2}} +\mathrm{5}}}{dx}}{\int\frac{{x}\left({x}^{\mathrm{2}} +\mathrm{2}\right)}{\sqrt{{x}^{\mathrm{2}} +\mathrm{5}}}\:{dx}} \\ $$

Question Number 72492    Answers: 3   Comments: 1

(1/(cosx))+(1/(sinx))=8 find the value of x

$$\frac{\mathrm{1}}{\mathrm{cosx}}+\frac{\mathrm{1}}{\mathrm{sinx}}=\mathrm{8} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x} \\ $$

Question Number 72488    Answers: 2   Comments: 0

{ ((4xy=1)),((4(√(1−x^2 )) ( y−(√(1−y^2 )) )=1)) :} Resolver elsistema en R

$$\begin{cases}{\mathrm{4}{xy}=\mathrm{1}}\\{\mathrm{4}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:\left(\:{y}−\sqrt{\mathrm{1}−{y}^{\mathrm{2}} }\:\right)=\mathrm{1}}\end{cases} \\ $$$$ \\ $$$${Resolver}\:{elsistema}\:{en}\:{R} \\ $$

Question Number 72483    Answers: 2   Comments: 0

Σ_(k = 0) ^n cos(a + kb)

$$\underset{\mathrm{k}\:=\:\mathrm{0}} {\overset{\mathrm{n}} {\sum}}\:\mathrm{cos}\left(\mathrm{a}\:+\:\mathrm{kb}\right) \\ $$

Question Number 72479    Answers: 0   Comments: 1

Question Number 72466    Answers: 1   Comments: 2

Prove that ∫_0 ^( 2) ∫_(−(√(1−(y−1)^2 ))) ^( 0 ) xy^2 dxdy = −(4/5) after changing the integral to polar form.

$${Prove}\:{that}\:\int_{\mathrm{0}} ^{\:\mathrm{2}} \int_{−\sqrt{\mathrm{1}−\left({y}−\mathrm{1}\right)^{\mathrm{2}} }} ^{\:\:\mathrm{0}\:} \:{xy}^{\mathrm{2}} {dxdy}\:=\:−\frac{\mathrm{4}}{\mathrm{5}} \\ $$$$\boldsymbol{{after}}\:\mathrm{changing}\:\mathrm{the}\:\mathrm{integral}\:\mathrm{to}\:\boldsymbol{\mathrm{polar}}\:\boldsymbol{\mathrm{form}}. \\ $$

Question Number 72458    Answers: 0   Comments: 0

Question Number 72453    Answers: 0   Comments: 0

Question Number 72447    Answers: 1   Comments: 0

Find the value of: (1/(sin 2°))+(1/(sin 4°))+(1/(sin 8°))+(1/(sin 16°))+... +(1/(sin (2^(1029) )^° ))

$${Find}\:{the}\:{value}\:{of}: \\ $$$$\frac{\mathrm{1}}{{sin}\:\mathrm{2}°}+\frac{\mathrm{1}}{{sin}\:\mathrm{4}°}+\frac{\mathrm{1}}{{sin}\:\mathrm{8}°}+\frac{\mathrm{1}}{{sin}\:\mathrm{16}°}+... \\ $$$$+\frac{\mathrm{1}}{{sin}\:\left(\mathrm{2}^{\mathrm{1029}} \right)^{°} } \\ $$

Question Number 72434    Answers: 1   Comments: 0

Question Number 72435    Answers: 0   Comments: 1

Question Number 72430    Answers: 0   Comments: 0

Hello find finde ∫_0 ^(+∞) ((ln(x))/(x^2 +ax+b))dx conditions a^2 <4b in therm of x_1 ,x_2 root of X^2 +aX+b hint Residus theorem applied too ((log^2 (z))/(z^2 +az+b)) this is very usufull i find it in lecture yesterday because we can easly evaluat any kinde of ∫_0 ^(+∞) ((log^k (z))/(p(z)))dz withe p(z) eiwthout root in ]0,+∞[ deg(p(z))≥2

$$\mathrm{Hello}\:\mathrm{find} \\ $$$$\mathrm{finde}\:\:\int_{\mathrm{0}} ^{+\infty} \frac{\mathrm{ln}\left(\mathrm{x}\right)}{\mathrm{x}^{\mathrm{2}} +\mathrm{ax}+\mathrm{b}}\mathrm{dx} \\ $$$$\mathrm{conditions}\:\mathrm{a}^{\mathrm{2}} <\mathrm{4b}\:\:\: \\ $$$$\mathrm{in}\:\mathrm{therm}\:\mathrm{of}\:\mathrm{x}_{\mathrm{1}} ,\mathrm{x}_{\mathrm{2}} \:\:\mathrm{root}\:\mathrm{of}\:\mathrm{X}^{\mathrm{2}} +\mathrm{aX}+\mathrm{b}\: \\ $$$$\:\mathrm{hint}\:\mathrm{Residus}\:\mathrm{theorem}\:\mathrm{applied}\:\mathrm{too}\:\frac{\mathrm{log}^{\mathrm{2}} \left(\mathrm{z}\right)}{\mathrm{z}^{\mathrm{2}} +\mathrm{az}+\mathrm{b}} \\ $$$$\mathrm{this}\:\mathrm{is}\:\mathrm{very}\:\mathrm{usufull}\:\mathrm{i}\:\mathrm{find}\:\mathrm{it}\:\mathrm{in}\:\mathrm{lecture}\:\mathrm{yesterday} \\ $$$$\mathrm{because}\:\mathrm{we}\:\mathrm{can}\:\mathrm{easly}\:\mathrm{evaluat}\:\mathrm{any}\:\mathrm{kinde}\:\mathrm{of}\:\int_{\mathrm{0}} ^{+\infty} \frac{\mathrm{log}^{\mathrm{k}} \left(\mathrm{z}\right)}{\mathrm{p}\left(\mathrm{z}\right)}\mathrm{dz} \\ $$$$\left.\mathrm{withe}\:\mathrm{p}\left(\mathrm{z}\right)\:\mathrm{eiwthout}\:\:\mathrm{root}\:\mathrm{in}\:\right]\mathrm{0},+\infty\left[\:\mathrm{deg}\left(\mathrm{p}\left(\mathrm{z}\right)\right)\geqslant\mathrm{2}\right. \\ $$

Question Number 72445    Answers: 0   Comments: 0

∫((x cos(ax))/(1+x^2 )) dx

$$\int\frac{{x}\:{cos}\left({ax}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx} \\ $$

Question Number 72443    Answers: 1   Comments: 0

2[0.5{48−31}^2 +35]=?

$$\mathrm{2}\left[\mathrm{0}.\mathrm{5}\left\{\mathrm{48}−\mathrm{31}\right\}^{\mathrm{2}} +\mathrm{35}\right]=? \\ $$

Question Number 72441    Answers: 2   Comments: 1

If^n C_(12) =^n C_8 , then n=

$$\mathrm{If}\:^{{n}} {C}_{\mathrm{12}} =\:^{{n}} {C}_{\mathrm{8}} \:,\:\mathrm{then}\:{n}= \\ $$

Question Number 72439    Answers: 0   Comments: 1

Question Number 72438    Answers: 0   Comments: 0

Question Number 72421    Answers: 1   Comments: 0

Question Number 72416    Answers: 0   Comments: 1

Question Number 72414    Answers: 1   Comments: 1

Question Number 72413    Answers: 0   Comments: 0

Question Number 72408    Answers: 1   Comments: 1

Question Number 72401    Answers: 1   Comments: 0

Find the area bounded by one leaf of the rose r = 12cos (3θ).

$${Find}\:{the}\:{area}\:{bounded}\:{by}\:{one}\:{leaf}\:{of} \\ $$$${the}\:{rose}\:{r}\:=\:\mathrm{12cos}\:\left(\mathrm{3}\theta\right). \\ $$

  Pg 1398      Pg 1399      Pg 1400      Pg 1401      Pg 1402      Pg 1403      Pg 1404      Pg 1405      Pg 1406      Pg 1407   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com