Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1403
Question Number 64391 Answers: 0 Comments: 1
$$\frac{\mathrm{6}}{\mathrm{a}+\mathrm{5}}+\frac{\mathrm{4}}{\mathrm{a}+\mathrm{5}} \\ $$
Question Number 64390 Answers: 1 Comments: 2
$${calculate}\:\int_{\mathrm{1}} ^{+\infty} \:\:\frac{{dx}}{{x}\sqrt{\mathrm{4}+{x}^{\mathrm{2}} }} \\ $$
Question Number 64384 Answers: 1 Comments: 0
Question Number 64382 Answers: 1 Comments: 0
$${please}\:\:{help}\:{with}\:{workings} \\ $$$$ \\ $$$$\int{Ln}\left[\sqrt{}\left(\mathrm{1}−{x}\right)+\sqrt{}\left(\mathrm{1}+{x}\right)\right]{dx} \\ $$
Question Number 64381 Answers: 0 Comments: 1
Question Number 64378 Answers: 0 Comments: 1
Question Number 64356 Answers: 1 Comments: 0
$$ \\ $$
Question Number 64355 Answers: 0 Comments: 2
$${let}\:{F}\left({x}\right)=\int_{{u}\left({x}\right)} ^{{v}\left({x}\left\{\right.\right.} {f}\left({x},{t}\right){dt} \\ $$$${how}\:{to}\:{calculate}\:\:\frac{{dF}}{{dx}}\left({x}\right)? \\ $$
Question Number 64354 Answers: 1 Comments: 0
$${some}\:{one}\:{write}\:{the}\:{statement} \\ $$$$\:{a}\:\equiv−{a}\left({mod}\:{m}\right)\: \\ $$$${show}\:{that}\:{this}\:{statement}\:{is}\:{not}\:{generally}\:{true}.!\:{giving}\:{a}\:{counter} \\ $$$${example} \\ $$
Question Number 64350 Answers: 0 Comments: 3
$${Given}\:{that}\:{f}\left({x}\right)\:=\:\begin{vmatrix}{{x}}&{{x}^{\mathrm{2}} }&{{x}^{\mathrm{3}} }\\{\mathrm{1}}&{\mathrm{2}{x}}&{\mathrm{3}{x}^{\mathrm{2}} }\\{\mathrm{0}}&{\mathrm{2}}&{\mathrm{6}{x}}\end{vmatrix},\:{find}\:{f}\:'\:\left({x}\right) \\ $$
Question Number 64348 Answers: 1 Comments: 0
$${the}\:{vectors}\:\boldsymbol{{a}}\:{and}\:\boldsymbol{{b}}\:{are}\:{such}\:{that}\:\mid\boldsymbol{{a}}\mid\:=\mathrm{3}\:,\:\mid\boldsymbol{{b}}\mid=\mathrm{5}\:{and}\:\boldsymbol{{a}}.\boldsymbol{{b}}=−\mathrm{14} \\ $$$${find}\:\mid\boldsymbol{{a}}−\boldsymbol{{b}}\mid \\ $$
Question Number 64347 Answers: 0 Comments: 0
$${Two}\:{consecutive}\:{integers}\:{between}\:{which}\:{a}\:{root}\:{of}\:{the}\:{equation} \\ $$$$\left.\:\mathrm{1}\right){x}^{\mathrm{3}} +{x}−\mathrm{16}=\mathrm{0}\: \\ $$$$\left.\mathrm{2}\right)\:{x}^{\mathrm{2}} −\mathrm{3}{x}+\mathrm{2}=\mathrm{0} \\ $$$${lies}\:{are}; \\ $$
Question Number 64335 Answers: 1 Comments: 0
$$\underset{\:\mathrm{0}} {\overset{\pi} {\int}}\:\:{x}\:\mathrm{sin}\:{x}\:\mathrm{cos}^{\mathrm{4}} {x}\:{dx}\:= \\ $$
Question Number 64334 Answers: 0 Comments: 1
$$\underset{{a}} {\overset{{b}} {\int}}\:\:\:\mid\:{f}\left({x}\right)\:\mid\:{dx}\:=\:\mathrm{0}\:\Rightarrow\:\underset{{a}} {\overset{{b}} {\int}}\:\:\left({f}\left({x}\right)\right)^{\mathrm{2}} \:{dx}\:=\:\mathrm{0} \\ $$
Question Number 64333 Answers: 2 Comments: 2
$$\underset{\:\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\:\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{tan}\:{x}}\:{dx}\:= \\ $$
Question Number 64332 Answers: 0 Comments: 2
$$\underset{\pi/\mathrm{6}} {\overset{\pi/\mathrm{3}} {\int}}\:\:\frac{\mathrm{1}}{\mathrm{sin}\:\mathrm{2}{x}}\:{dx}\:= \\ $$
Question Number 64331 Answers: 0 Comments: 1
$$\underset{−\mathrm{1}} {\overset{\mathrm{1}} {\int}}\:\mathrm{sin}^{\mathrm{11}} {x}\:{dx}\:= \\ $$
Question Number 64330 Answers: 0 Comments: 0
$$\mathrm{If}\:\underset{\:\mathrm{0}} {\overset{\infty} {\int}}\:{e}^{−{x}} \mathrm{sin}\:^{{n}} {x}\:{dx}\:=\:\frac{\mathrm{24}}{\mathrm{125}},\:\mathrm{then}\:{n}= \\ $$
Question Number 64329 Answers: 0 Comments: 0
$$\mathrm{If}\:{I}=\underset{\:\mathrm{3}} {\overset{\mathrm{4}} {\int}}\:\frac{\mathrm{1}}{\sqrt[{\mathrm{3}}]{\mathrm{log}\:{x}}}\:{dx}\:,\:\mathrm{then}\: \\ $$
Question Number 64328 Answers: 0 Comments: 0
$$\mathrm{Let}\:\:{f}\::\:{R}\rightarrow{R},\:{g}\::\:{R}\rightarrow{R}\:\:\mathrm{be}\:\mathrm{continuous} \\ $$$$\mathrm{functions}.\:\mathrm{Then} \\ $$$$\underset{−\pi/\mathrm{2}} {\overset{\pi/\mathrm{2}} {\int}}\:\left[\:{f}\left({x}\right)+{f}\left(−{x}\right)\:\right]\:\left[\:{g}\left({x}\right)\left({g}\left(−{x}\right)\:\right]\:{dx}\:=\right. \\ $$
Question Number 64327 Answers: 0 Comments: 1
$$\frac{{d}}{{dx}}\:\:\left(\:\underset{{f}\left({x}\right)} {\overset{{g}\left({x}\right)} {\int}}\:\phi\left({t}\right)\:{dt}\:\right)\:= \\ $$
Question Number 64320 Answers: 1 Comments: 1
$${without}\:{beta}\:{function} \\ $$$$\int{cos}^{\mathrm{3}} {t}\:{sin}^{\mathrm{2}} {t}\:{dt}\: \\ $$
Question Number 64311 Answers: 3 Comments: 1
Question Number 64309 Answers: 0 Comments: 1
Question Number 64305 Answers: 0 Comments: 6
Question Number 64302 Answers: 0 Comments: 0
Pg 1398 Pg 1399 Pg 1400 Pg 1401 Pg 1402 Pg 1403 Pg 1404 Pg 1405 Pg 1406 Pg 1407
Terms of Service
Privacy Policy
Contact: info@tinkutara.com