Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1403
Question Number 71371 Answers: 0 Comments: 1
Question Number 71360 Answers: 0 Comments: 2
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}−\sqrt{\mathrm{1}+\mathrm{2x}^{\mathrm{4}} }\mathrm{cos}\:\left(\sqrt{\mathrm{2}}\mathrm{x}^{\mathrm{2}} \right)}{\mathrm{x}^{\mathrm{5}} \mathrm{ln}\:\left(\mathrm{1}−\mathrm{2x}^{\mathrm{3}} \right)} \\ $$
Question Number 71348 Answers: 0 Comments: 3
Question Number 71327 Answers: 2 Comments: 0
Question Number 71326 Answers: 2 Comments: 0
$$\left(−\mathrm{64}\right)^{\frac{\mathrm{1}}{\mathrm{6}}} =?\left(\boldsymbol{\mathrm{I}}\mathrm{s}\:\mathrm{there}\:\mathrm{any}\:\mathrm{short}\:\mathrm{cut}\:\mathrm{for}\:\mathrm{mcq}\right) \\ $$
Question Number 71317 Answers: 1 Comments: 3
$$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\:\frac{\mid\mathrm{2}{x}−\mathrm{2}\mid−\mid\mathrm{2}{x}+\mathrm{2}\mid}{{x}} \\ $$
Question Number 71315 Answers: 0 Comments: 0
$$\:{please}\:{anyone}\:{check}\:{Q}#\mathrm{71198} \\ $$
Question Number 71314 Answers: 2 Comments: 1
$${find}\:\int_{−\mathrm{1}} ^{\mathrm{1}} {ln}\left(\sqrt{\mathrm{1}+{x}}+\sqrt{\mathrm{1}−{x}}\right){dx} \\ $$
Question Number 71311 Answers: 1 Comments: 1
Question Number 71301 Answers: 0 Comments: 0
$${let}\:{f}\left({x}\right)=\int_{\mathrm{1}+{x}} ^{\mathrm{1}+{x}^{\mathrm{2}} } \:\frac{{arctan}\left({xt}+\mathrm{2}\right)}{{x}+{t}}{dt} \\ $$$${calculate}\:{f}^{'} \left({x}\right) \\ $$$$\left.\mathrm{2}\right){find}\:{lim}_{{x}\rightarrow\mathrm{0}} {f}\left({x}\right) \\ $$
Question Number 71362 Answers: 0 Comments: 0
$$\boldsymbol{\mathrm{please}}\:\boldsymbol{{prove}}\:\boldsymbol{{that}} \\ $$$$\underset{\boldsymbol{{x}}\rightarrow\mathrm{0}} {\boldsymbol{{lim}}}\frac{\boldsymbol{{x}}−\boldsymbol{{sinx}}}{\boldsymbol{{x}}^{\mathrm{3}} }\:=\frac{\mathrm{1}}{\mathrm{6}}\:\boldsymbol{{by}}\:\boldsymbol{{using}} \\ $$$$\boldsymbol{{x}}=\mathrm{3}\boldsymbol{{y}}\:\boldsymbol{{and}}\: \\ $$$$\boldsymbol{{sin}}\mathrm{3}\boldsymbol{{y}}=\mathrm{3}\boldsymbol{{siny}}−\mathrm{4}\boldsymbol{{sin}}^{\mathrm{3}} \boldsymbol{{y}} \\ $$
Question Number 71294 Answers: 1 Comments: 1
$${solve}\:{in}\:\mathbb{Z}\:\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}=\frac{\mathrm{1}}{{p}}\:{with}\:{p}\in\mathbb{P} \\ $$
Question Number 71282 Answers: 4 Comments: 0
$${solve} \\ $$$${x}\left({y}+{z}\right)=\mathrm{27} \\ $$$${y}\left({z}+{x}\right)=\mathrm{32} \\ $$$${z}\left({x}+{y}\right)=\mathrm{35} \\ $$
Question Number 71273 Answers: 0 Comments: 1
Question Number 71265 Answers: 0 Comments: 1
Question Number 71255 Answers: 1 Comments: 2
Question Number 71242 Answers: 3 Comments: 0
$$\mathrm{Given}:\:\:\:\frac{\mathrm{a}}{\mathrm{b}}\:+\:\frac{\mathrm{c}}{\mathrm{d}}\:\:=\:\:\frac{\mathrm{b}}{\mathrm{a}}\:+\:\frac{\mathrm{d}}{\mathrm{c}} \\ $$$$\mathrm{Show}\:\mathrm{that},\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{a}^{\mathrm{2}} }{\mathrm{b}^{\mathrm{2}} }\:−\:\frac{\mathrm{c}^{\mathrm{2}} }{\mathrm{d}^{\mathrm{2}} }\:\:=\:\:\frac{\mathrm{b}^{\mathrm{2}} }{\mathrm{a}^{\mathrm{2}} }\:−\:\frac{\mathrm{d}^{\mathrm{2}} }{\mathrm{c}^{\mathrm{2}} } \\ $$
Question Number 71239 Answers: 2 Comments: 3
$$\int\frac{\mathrm{1}}{\mathrm{2cosx}−\mathrm{5sinx}−\mathrm{3}}\mathrm{dx} \\ $$
Question Number 71235 Answers: 2 Comments: 1
$${sinh}\left[{ln}\:\left({x}\:+\:\sqrt{\mathrm{1}\:+\:{x}^{\mathrm{2}} }\right)\:\right]\:\equiv\: \\ $$$$ \\ $$$${A}.\:\:\mathrm{2}{x} \\ $$$${B}.\:\:\frac{\mathrm{1}}{{x}} \\ $$$${C}.\:\:{x}^{\mathrm{2}} \\ $$$${D}.\:\:{x} \\ $$
Question Number 71233 Answers: 1 Comments: 3
Question Number 71229 Answers: 0 Comments: 1
Question Number 71220 Answers: 0 Comments: 0
Question Number 71216 Answers: 1 Comments: 0
Question Number 71206 Answers: 1 Comments: 0
$${Let}\:\:{p},{q},{r}\:\:{are}\:\:{positive}\:\:{real}\:\:{numbers}\:. \\ $$$$\mathrm{0}\:<\:{r}\:<\:{min}\left\{{p},{q}\right\}. \\ $$$${Prove}\:\:{that} \\ $$$$\:\:\:\:\:\sqrt{{p}−{r}}\:+\:\sqrt{{q}−{r}}\:\:\leqslant\:\:{min}\left\{\sqrt{\frac{{pq}}{{r}}}\:,\:\sqrt{\mathrm{2}\left({p}+{q}\:−\:\mathrm{2}{r}\right)}\:\right\} \\ $$
Question Number 71196 Answers: 1 Comments: 0
$${the}\:{curve}\:{y}\:=\:{f}\left({x}\right),\:{when}\:{f}\left({x}\right)\:{is}\:{a}\:{quadratic}\:{expression}\:{has}\: \\ $$$${a}\:{maximum}\:{value}\:{point}\:{at}\:\left(\mathrm{1},\mathrm{4}\right).\:{The}\:{curve}\:{touches}\:{the}\:{line} \\ $$$$\mathrm{6}{x}\:+\:{y}\:=\:\mathrm{13}.\:{Find}\:{the}\:{value}\:{of}\:{x}\:{for}\:{which}\:{y}\:=\:\mathrm{8} \\ $$
Question Number 71184 Answers: 1 Comments: 4
Pg 1398 Pg 1399 Pg 1400 Pg 1401 Pg 1402 Pg 1403 Pg 1404 Pg 1405 Pg 1406 Pg 1407
Terms of Service
Privacy Policy
Contact: info@tinkutara.com