Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1403

Question Number 64391    Answers: 0   Comments: 1

(6/(a+5))+(4/(a+5))

$$\frac{\mathrm{6}}{\mathrm{a}+\mathrm{5}}+\frac{\mathrm{4}}{\mathrm{a}+\mathrm{5}} \\ $$

Question Number 64390    Answers: 1   Comments: 2

calculate ∫_1 ^(+∞) (dx/(x(√(4+x^2 ))))

$${calculate}\:\int_{\mathrm{1}} ^{+\infty} \:\:\frac{{dx}}{{x}\sqrt{\mathrm{4}+{x}^{\mathrm{2}} }} \\ $$

Question Number 64384    Answers: 1   Comments: 0

Question Number 64382    Answers: 1   Comments: 0

please help with workings ∫Ln[(√)(1−x)+(√)(1+x)]dx

$${please}\:\:{help}\:{with}\:{workings} \\ $$$$ \\ $$$$\int{Ln}\left[\sqrt{}\left(\mathrm{1}−{x}\right)+\sqrt{}\left(\mathrm{1}+{x}\right)\right]{dx} \\ $$

Question Number 64381    Answers: 0   Comments: 1

Question Number 64378    Answers: 0   Comments: 1

Question Number 64356    Answers: 1   Comments: 0

$$ \\ $$

Question Number 64355    Answers: 0   Comments: 2

let F(x)=∫_(u(x)) ^(v(x{) f(x,t)dt how to calculate (dF/dx)(x)?

$${let}\:{F}\left({x}\right)=\int_{{u}\left({x}\right)} ^{{v}\left({x}\left\{\right.\right.} {f}\left({x},{t}\right){dt} \\ $$$${how}\:{to}\:{calculate}\:\:\frac{{dF}}{{dx}}\left({x}\right)? \\ $$

Question Number 64354    Answers: 1   Comments: 0

some one write the statement a ≡−a(mod m) show that this statement is not generally true.! giving a counter example

$${some}\:{one}\:{write}\:{the}\:{statement} \\ $$$$\:{a}\:\equiv−{a}\left({mod}\:{m}\right)\: \\ $$$${show}\:{that}\:{this}\:{statement}\:{is}\:{not}\:{generally}\:{true}.!\:{giving}\:{a}\:{counter} \\ $$$${example} \\ $$

Question Number 64350    Answers: 0   Comments: 3

Given that f(x) = determinant ((x,x^2 ,x^3 ),(1,(2x),(3x^2 )),(0,2,(6x))), find f ′ (x)

$${Given}\:{that}\:{f}\left({x}\right)\:=\:\begin{vmatrix}{{x}}&{{x}^{\mathrm{2}} }&{{x}^{\mathrm{3}} }\\{\mathrm{1}}&{\mathrm{2}{x}}&{\mathrm{3}{x}^{\mathrm{2}} }\\{\mathrm{0}}&{\mathrm{2}}&{\mathrm{6}{x}}\end{vmatrix},\:{find}\:{f}\:'\:\left({x}\right) \\ $$

Question Number 64348    Answers: 1   Comments: 0

the vectors a and b are such that ∣a∣ =3 , ∣b∣=5 and a.b=−14 find ∣a−b∣

$${the}\:{vectors}\:\boldsymbol{{a}}\:{and}\:\boldsymbol{{b}}\:{are}\:{such}\:{that}\:\mid\boldsymbol{{a}}\mid\:=\mathrm{3}\:,\:\mid\boldsymbol{{b}}\mid=\mathrm{5}\:{and}\:\boldsymbol{{a}}.\boldsymbol{{b}}=−\mathrm{14} \\ $$$${find}\:\mid\boldsymbol{{a}}−\boldsymbol{{b}}\mid \\ $$

Question Number 64347    Answers: 0   Comments: 0

Two consecutive integers between which a root of the equation 1)x^3 +x−16=0 2) x^2 −3x+2=0 lies are;

$${Two}\:{consecutive}\:{integers}\:{between}\:{which}\:{a}\:{root}\:{of}\:{the}\:{equation} \\ $$$$\left.\:\mathrm{1}\right){x}^{\mathrm{3}} +{x}−\mathrm{16}=\mathrm{0}\: \\ $$$$\left.\mathrm{2}\right)\:{x}^{\mathrm{2}} −\mathrm{3}{x}+\mathrm{2}=\mathrm{0} \\ $$$${lies}\:{are}; \\ $$

Question Number 64335    Answers: 1   Comments: 0

∫_( 0) ^π x sin x cos^4 x dx =

$$\underset{\:\mathrm{0}} {\overset{\pi} {\int}}\:\:{x}\:\mathrm{sin}\:{x}\:\mathrm{cos}^{\mathrm{4}} {x}\:{dx}\:= \\ $$

Question Number 64334    Answers: 0   Comments: 1

∫_a ^b ∣ f(x) ∣ dx = 0 ⇒ ∫_a ^b (f(x))^2 dx = 0

$$\underset{{a}} {\overset{{b}} {\int}}\:\:\:\mid\:{f}\left({x}\right)\:\mid\:{dx}\:=\:\mathrm{0}\:\Rightarrow\:\underset{{a}} {\overset{{b}} {\int}}\:\:\left({f}\left({x}\right)\right)^{\mathrm{2}} \:{dx}\:=\:\mathrm{0} \\ $$

Question Number 64333    Answers: 2   Comments: 2

∫_( 0) ^(π/2) (1/(1+tan x)) dx =

$$\underset{\:\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\:\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{tan}\:{x}}\:{dx}\:= \\ $$

Question Number 64332    Answers: 0   Comments: 2

∫_(π/6) ^(π/3) (1/(sin 2x)) dx =

$$\underset{\pi/\mathrm{6}} {\overset{\pi/\mathrm{3}} {\int}}\:\:\frac{\mathrm{1}}{\mathrm{sin}\:\mathrm{2}{x}}\:{dx}\:= \\ $$

Question Number 64331    Answers: 0   Comments: 1

∫_(−1) ^1 sin^(11) x dx =

$$\underset{−\mathrm{1}} {\overset{\mathrm{1}} {\int}}\:\mathrm{sin}^{\mathrm{11}} {x}\:{dx}\:= \\ $$

Question Number 64330    Answers: 0   Comments: 0

If ∫_( 0) ^∞ e^(−x) sin^n x dx = ((24)/(125)), then n=

$$\mathrm{If}\:\underset{\:\mathrm{0}} {\overset{\infty} {\int}}\:{e}^{−{x}} \mathrm{sin}\:^{{n}} {x}\:{dx}\:=\:\frac{\mathrm{24}}{\mathrm{125}},\:\mathrm{then}\:{n}= \\ $$

Question Number 64329    Answers: 0   Comments: 0

If I=∫_( 3) ^4 (1/((log x))^(1/3) ) dx , then

$$\mathrm{If}\:{I}=\underset{\:\mathrm{3}} {\overset{\mathrm{4}} {\int}}\:\frac{\mathrm{1}}{\sqrt[{\mathrm{3}}]{\mathrm{log}\:{x}}}\:{dx}\:,\:\mathrm{then}\: \\ $$

Question Number 64328    Answers: 0   Comments: 0

Let f : R→R, g : R→R be continuous functions. Then ∫_(−π/2) ^(π/2) [ f(x)+f(−x) ] [ g(x)(g(−x) ] dx =

$$\mathrm{Let}\:\:{f}\::\:{R}\rightarrow{R},\:{g}\::\:{R}\rightarrow{R}\:\:\mathrm{be}\:\mathrm{continuous} \\ $$$$\mathrm{functions}.\:\mathrm{Then} \\ $$$$\underset{−\pi/\mathrm{2}} {\overset{\pi/\mathrm{2}} {\int}}\:\left[\:{f}\left({x}\right)+{f}\left(−{x}\right)\:\right]\:\left[\:{g}\left({x}\right)\left({g}\left(−{x}\right)\:\right]\:{dx}\:=\right. \\ $$

Question Number 64327    Answers: 0   Comments: 1

(d/dx) ( ∫_(f(x)) ^(g(x)) φ(t) dt ) =

$$\frac{{d}}{{dx}}\:\:\left(\:\underset{{f}\left({x}\right)} {\overset{{g}\left({x}\right)} {\int}}\:\phi\left({t}\right)\:{dt}\:\right)\:= \\ $$

Question Number 64320    Answers: 1   Comments: 1

without beta function ∫cos^3 t sin^2 t dt

$${without}\:{beta}\:{function} \\ $$$$\int{cos}^{\mathrm{3}} {t}\:{sin}^{\mathrm{2}} {t}\:{dt}\: \\ $$

Question Number 64311    Answers: 3   Comments: 1

Question Number 64309    Answers: 0   Comments: 1

Question Number 64305    Answers: 0   Comments: 6

Question Number 64302    Answers: 0   Comments: 0

  Pg 1398      Pg 1399      Pg 1400      Pg 1401      Pg 1402      Pg 1403      Pg 1404      Pg 1405      Pg 1406      Pg 1407   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com