Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1401
Question Number 72441 Answers: 2 Comments: 1
$$\mathrm{If}\:^{{n}} {C}_{\mathrm{12}} =\:^{{n}} {C}_{\mathrm{8}} \:,\:\mathrm{then}\:{n}= \\ $$
Question Number 72439 Answers: 0 Comments: 1
Question Number 72438 Answers: 0 Comments: 0
Question Number 72421 Answers: 1 Comments: 0
Question Number 72416 Answers: 0 Comments: 1
Question Number 72414 Answers: 1 Comments: 1
Question Number 72413 Answers: 0 Comments: 0
Question Number 72408 Answers: 1 Comments: 1
Question Number 72401 Answers: 1 Comments: 0
$${Find}\:{the}\:{area}\:{bounded}\:{by}\:{one}\:{leaf}\:{of} \\ $$$${the}\:{rose}\:{r}\:=\:\mathrm{12cos}\:\left(\mathrm{3}\theta\right). \\ $$
Question Number 72398 Answers: 0 Comments: 4
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left[\mathrm{x}−\mathrm{x}^{\mathrm{2}} \mathrm{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{x}}\right)\right] \\ $$
Question Number 72397 Answers: 0 Comments: 4
$${find}\:{A}\left({x}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\mathrm{1}−{xsin}^{\mathrm{2}} \theta\right){d}\theta\:\:\:{with}\:\mid{x}\mid<\mathrm{1} \\ $$
Question Number 72396 Answers: 0 Comments: 2
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{1}+{x}^{\mathrm{2}} }{\mathrm{2}+{x}^{\mathrm{2}} \:+{x}^{\mathrm{4}} }{dx} \\ $$
Question Number 72395 Answers: 0 Comments: 0
$${find}\:\sum_{{k}=\mathrm{0}} ^{{n}} \left({C}_{{n}} ^{{k}} \right)^{\mathrm{3}} \\ $$
Question Number 72394 Answers: 0 Comments: 3
$${let}\:{g}\left({x}\right)=\frac{{ln}\left(\mathrm{1}+{x}\right)}{\mathrm{3}+{x}^{\mathrm{2}} } \\ $$$$\left.\mathrm{1}\right)\:{find}\:{g}^{\left({n}\right)} \left({x}\right){and}\:{g}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right){developp}\:{g}\:{at}\:{integr}\:{serie} \\ $$
Question Number 72393 Answers: 0 Comments: 0
$${let}\:{f}\left({x}\right)\:={cos}\left({narccosx}\right) \\ $$$$\left.\mathrm{1}\right){calculate}\:{f}^{\left({n}\right)} \left({x}\right)\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right){developp}\:{f}\:{at}\:{integr}\:{serie} \\ $$
Question Number 72392 Answers: 0 Comments: 1
$${calculate}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:{e}^{−{nx}} {ln}\left(\mathrm{1}+{x}\right){dx}\:\:{with}\:{n}\:{natural}\:\geqslant\mathrm{1} \\ $$
Question Number 72391 Answers: 0 Comments: 1
$${calculte}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\left(−\mathrm{1}\right)^{\left[{x}\right]} }{\mathrm{4}+{x}^{\mathrm{2}} }{dx} \\ $$
Question Number 72362 Answers: 1 Comments: 0
$${Calculate}\:{the}\:{sides}\:{of}\:{a}\:{triangle} \\ $$$${knowing}\:{the}\:{heights}\:{h}_{\mathrm{a}\:} =\frac{\mathrm{1}}{\mathrm{9}} \\ $$$${h}_{\mathrm{b}} =\frac{\mathrm{1}}{\mathrm{7}}\:{and}\:{h}_{\mathrm{c}} =\frac{\mathrm{1}}{\mathrm{4}} \\ $$
Question Number 72462 Answers: 0 Comments: 2
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}−\sqrt{\mathrm{1}+\mathrm{4x}\:}\mathrm{cos}\left(\mathrm{x}^{\mathrm{2}} \right)}{\mathrm{x}^{\mathrm{3}} \mathrm{arctan}\left(\mathrm{x}^{\mathrm{5}} \right)} \\ $$
Question Number 72346 Answers: 0 Comments: 1
Question Number 72344 Answers: 0 Comments: 3
$${prove}\:{that}\:\:{e}^{{lnx}} \:=\:{x} \\ $$$${or}\:\:{a}^{{log}_{{a}} {x}} \:=\:{x} \\ $$
Question Number 72343 Answers: 0 Comments: 3
$${given}\:{that}\:{y}\:=\:{ln}\:\left(\:\mathrm{1}\:+\:{cos}^{\mathrm{2}} {x}\right)\:{find}\:\frac{{dy}}{{dx}\:\:}\:{at}\:{the}\:{point}\:\:{x}\:=\:\frac{\mathrm{3}\pi}{\mathrm{4}} \\ $$$${and}\:\:{if}\:\:{y}\:={ln}\left({x}^{\mathrm{2}} \:+\:\mathrm{4}\right)\:{find}\:\:\frac{{dy}}{{dx}}\:{at}\:{x}\:=\:\mathrm{1} \\ $$
Question Number 72339 Answers: 0 Comments: 1
$$\sqrt{{x}\:+\:\sqrt{\mathrm{4}{x}\:+\:\sqrt{\mathrm{16}{x}\:+\:...\:+\:\sqrt{\mathrm{4}^{\mathrm{2019}} {x}\:+\:\mathrm{3}}}}}\:\:=\:\:\sqrt{{x}}\:+\:\mathrm{1} \\ $$
Question Number 72337 Answers: 1 Comments: 1
$${Evaluate}\:\:\int_{−\mathrm{5}} ^{\mathrm{5}} \left(\sqrt{\mathrm{25}−{x}^{\mathrm{2}} }\:\right)\:{dx}\:{using} \\ $$$$\Rightarrow\:{an}\:{algebraic}\:{method} \\ $$$$\Rightarrow\:{Geometrical}\:{mehod}\: \\ $$$${thanks}\:{in}\:{advanced}\:{great}\:{mathematicians} \\ $$
Question Number 72336 Answers: 0 Comments: 0
$${Obain}\:{an}\:{equation}\:{for}\: \\ $$$$\Rightarrow\:{the}\:{left}\:{Reimen}\:{Sum} \\ $$$$\Rightarrow\:{the}\:{right}\:{Reimen}\:{sum} \\ $$$$\Rightarrow\:{Trapeziodal}\:{rule} \\ $$$$\Rightarrow\:{Newton}\:{Raphson}'{s}\:{Iteration} \\ $$$$\:\:{Hence}\:{find}\:{and}\:{approximate}\:{value}\:{for}\:\int_{\mathrm{0}} ^{\mathrm{3}} \left({e}^{{x}} \:+\:{x}^{\mathrm{2}} \right){dx} \\ $$
Question Number 72332 Answers: 1 Comments: 0
$${let}\:{Q}=\frac{\mathrm{1}+{tan}\left(\frac{\mathrm{3}\pi}{\mathrm{8}}\right)\:.\:{tan}\left(\frac{\pi}{\mathrm{10}}\right)}{\mathrm{1}−{tan}\left(\frac{\pi}{\mathrm{8}}\right).{tan}\left(\frac{\pi}{\mathrm{10}}\right)} \\ $$$$ \\ $$$${prove}\:{that} \\ $$$$\: \\ $$$$\frac{{Q}−\mathrm{1}}{{Q}+\mathrm{1}}=\sqrt{\mathrm{7}−\mathrm{3}\sqrt{\mathrm{5}}−\sqrt{\mathrm{85}−\mathrm{38}\sqrt{\mathrm{5}}}} \\ $$$$ \\ $$
Pg 1396 Pg 1397 Pg 1398 Pg 1399 Pg 1400 Pg 1401 Pg 1402 Pg 1403 Pg 1404 Pg 1405
Terms of Service
Privacy Policy
Contact: info@tinkutara.com