Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1398

Question Number 72294    Answers: 1   Comments: 4

Question Number 72291    Answers: 1   Comments: 0

Question Number 72289    Answers: 2   Comments: 0

Bonjour. Aidez moi a resoudre le systeme suivant dans R^2 x−y=2 xy=20

$${Bonjour}. \\ $$$${Aidez}\:{moi}\:{a}\:{resoudre}\:{le}\:{systeme}\: \\ $$$${suivant}\:\:\:\:{dans}\:\mathbb{R}^{\mathrm{2}} \:\:\:\:\: \\ $$$${x}−{y}=\mathrm{2} \\ $$$${xy}=\mathrm{20} \\ $$

Question Number 72275    Answers: 0   Comments: 2

Σ_(i=1) ^6 X_i =42 Find X_1 and X_3

$$\underset{{i}=\mathrm{1}} {\overset{\mathrm{6}} {\sum}}{X}_{{i}} =\mathrm{42} \\ $$$${Find}\:{X}_{\mathrm{1}} \:{and}\:{X}_{\mathrm{3}} \\ $$

Question Number 72260    Answers: 1   Comments: 3

let f(x)=((2x+3)/(x^2 +1)) calculate f^((n)) (x) 2)find f^((10)) (x) and f^((15)) (x) 3)calculate f^((10)) (0) and f^((15)) (0) 4)developp f at integr serie 5)let g(x)=∫_0 ^x f(t)dt developp g at integr serie.

$${let}\:{f}\left({x}\right)=\frac{\mathrm{2}{x}+\mathrm{3}}{{x}^{\mathrm{2}} +\mathrm{1}} \\ $$$${calculate}\:\:{f}^{\left({n}\right)} \left({x}\right) \\ $$$$\left.\mathrm{2}\right){find}\:{f}^{\left(\mathrm{10}\right)} \left({x}\right)\:{and}\:{f}^{\left(\mathrm{15}\right)} \left({x}\right) \\ $$$$\left.\mathrm{3}\right){calculate}\:{f}^{\left(\mathrm{10}\right)} \left(\mathrm{0}\right)\:{and}\:{f}^{\left(\mathrm{15}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{4}\right){developp}\:{f}\:{at}\:{integr}\:{serie} \\ $$$$\left.\mathrm{5}\right){let}\:{g}\left({x}\right)=\int_{\mathrm{0}} ^{{x}} {f}\left({t}\right){dt}\:\:{developp}\:{g}\:{at}\:{integr}\:{serie}. \\ $$

Question Number 72259    Answers: 1   Comments: 0

∫yz dx +∫xz dy +∫xy dz pleas sir help me ?

$$\int{yz}\:{dx}\:+\int{xz}\:{dy}\:+\int{xy}\:{dz}\:\:\:\:{pleas}\:{sir}\:{help}\:{me}\:? \\ $$

Question Number 72286    Answers: 0   Comments: 0

Question Number 72247    Answers: 1   Comments: 0

Question Number 72232    Answers: 0   Comments: 6

to all those who deleted their posts after they had been answered: I will not answer you anymore this forum had been great but lately it has been filling with unpolite people I′m not a freebie solver for anybody′s homework

$$\mathrm{to}\:\mathrm{all}\:\mathrm{those}\:\mathrm{who}\:\mathrm{deleted}\:\mathrm{their}\:\mathrm{posts}\:\mathrm{after}\:\mathrm{they} \\ $$$$\mathrm{had}\:\mathrm{been}\:\mathrm{answered}:\:\mathrm{I}\:\mathrm{will}\:\mathrm{not}\:\mathrm{answer}\:\mathrm{you} \\ $$$$\mathrm{anymore} \\ $$$$\mathrm{this}\:\mathrm{forum}\:\mathrm{had}\:\mathrm{been}\:\mathrm{great}\:\mathrm{but}\:\mathrm{lately}\:\mathrm{it}\:\mathrm{has} \\ $$$$\mathrm{been}\:\mathrm{filling}\:\mathrm{with}\:\mathrm{unpolite}\:\mathrm{people} \\ $$$$\mathrm{I}'\mathrm{m}\:\mathrm{not}\:\mathrm{a}\:\mathrm{freebie}\:\mathrm{solver}\:\mathrm{for}\:\mathrm{anybody}'\mathrm{s}\:\mathrm{homework} \\ $$

Question Number 72251    Answers: 0   Comments: 1

Question Number 72250    Answers: 0   Comments: 2

f(x)=(ax+b)sin(x)+(cx+d)cos(x) and (dy/dx)=xcos(x) find a , b , c , d

$${f}\left({x}\right)=\left({ax}+{b}\right){sin}\left({x}\right)+\left({cx}+{d}\right){cos}\left({x}\right) \\ $$$${and}\:\:\:\frac{{dy}}{{dx}}={xcos}\left({x}\right) \\ $$$${find}\:\:{a}\:,\:{b}\:,\:{c}\:,\:{d} \\ $$$$ \\ $$$$ \\ $$

Question Number 72248    Answers: 1   Comments: 1

Question Number 72287    Answers: 0   Comments: 0

Question Number 72218    Answers: 0   Comments: 3

Question Number 72198    Answers: 1   Comments: 8

Question Number 72194    Answers: 2   Comments: 1

Question Number 72190    Answers: 1   Comments: 2

3^x +4^x =5^x

$$\mathrm{3}^{\mathrm{x}} +\mathrm{4}^{\mathrm{x}} =\mathrm{5}^{\mathrm{x}} \\ $$

Question Number 72185    Answers: 0   Comments: 2

Question Number 72390    Answers: 0   Comments: 1

calculate U_n =∫_0 ^∞ ((arctan(1+x^4 ))/((x^2 +n^2 )^3 ))dx and determine nature of the serie Σ U_n

$${calculate}\:{U}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left(\mathrm{1}+{x}^{\mathrm{4}} \right)}{\left({x}^{\mathrm{2}} \:+{n}^{\mathrm{2}} \right)^{\mathrm{3}} }{dx} \\ $$$${and}\:{determine}\:{nature}\:{of}\:{the}\:{serie}\:\Sigma\:{U}_{{n}} \\ $$

Question Number 72389    Answers: 1   Comments: 0

find Σ_(k=1) ^n k(C_n ^k )^2 interms of n

$${find}\:\sum_{{k}=\mathrm{1}} ^{{n}} {k}\left({C}_{{n}} ^{{k}} \right)^{\mathrm{2}} \:{interms}\:{of}\:{n} \\ $$

Question Number 72161    Answers: 1   Comments: 4

Question Number 72178    Answers: 0   Comments: 3

Question Number 72153    Answers: 1   Comments: 3

∫((sin^3 x)/(√(cos x)))dx ∫sin(lnx)dx

$$\int\frac{\mathrm{sin}\:^{\mathrm{3}} \mathrm{x}}{\sqrt{\mathrm{cos}\:\mathrm{x}}}\mathrm{dx} \\ $$$$\int\mathrm{sin}\left(\mathrm{lnx}\right)\mathrm{dx} \\ $$

Question Number 72150    Answers: 0   Comments: 1

Question Number 72148    Answers: 0   Comments: 1

Question Number 72145    Answers: 0   Comments: 4

prove that: cos α×cos 2α×cos 2^2 α...cos 2^n α =((sin 2^(n+1) α)/(2^(n+1) sin α))

$${prove}\:{that}: \\ $$$$\mathrm{cos}\:\alpha×\mathrm{cos}\:\mathrm{2}\alpha×{cos}\:\mathrm{2}^{\mathrm{2}} \alpha...{cos}\:\mathrm{2}^{{n}} \alpha \\ $$$$=\frac{\mathrm{sin}\:\mathrm{2}^{{n}+\mathrm{1}} \alpha}{\mathrm{2}^{{n}+\mathrm{1}} \mathrm{sin}\:\alpha} \\ $$$$ \\ $$

  Pg 1393      Pg 1394      Pg 1395      Pg 1396      Pg 1397      Pg 1398      Pg 1399      Pg 1400      Pg 1401      Pg 1402   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com