Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1391

Question Number 71939    Answers: 1   Comments: 1

Question Number 71944    Answers: 1   Comments: 0

Question Number 71925    Answers: 1   Comments: 0

Solve (√(1 − x^2 )) = x^(4/3)

$$\:\boldsymbol{{Solve}}\:\:\sqrt{\mathrm{1}\:−\:\boldsymbol{{x}}^{\mathrm{2}} }\:=\:\boldsymbol{{x}}^{\mathrm{4}/\mathrm{3}} \\ $$

Question Number 71921    Answers: 0   Comments: 0

Question Number 72062    Answers: 1   Comments: 2

Question Number 71904    Answers: 0   Comments: 0

Question Number 71903    Answers: 2   Comments: 0

ax + by = 3 ax^2 + by^2 = 7 ax^3 + by^3 = 16 ax^4 + by^4 = 42 ax^5 + by^5 = ?

$${ax}\:+\:{by}\:\:=\:\:\mathrm{3} \\ $$$${ax}^{\mathrm{2}} \:+\:{by}^{\mathrm{2}} \:\:=\:\:\mathrm{7} \\ $$$${ax}^{\mathrm{3}} \:+\:{by}^{\mathrm{3}} \:\:=\:\:\mathrm{16} \\ $$$${ax}^{\mathrm{4}} \:+\:{by}^{\mathrm{4}} \:\:=\:\:\mathrm{42} \\ $$$${ax}^{\mathrm{5}} \:+\:{by}^{\mathrm{5}} \:\:=\:\:? \\ $$$$ \\ $$

Question Number 71926    Answers: 1   Comments: 2

Question Number 71894    Answers: 0   Comments: 1

lim_(x→(π/2)) (sin x)^(tanx)

$$\underset{{x}\rightarrow\frac{\pi}{\mathrm{2}}} {\mathrm{lim}}\left(\mathrm{sin}\:\mathrm{x}\right)^{\mathrm{tanx}} \\ $$

Question Number 71991    Answers: 1   Comments: 0

Question Number 71886    Answers: 0   Comments: 0

Question Number 71868    Answers: 0   Comments: 3

Question Number 71864    Answers: 1   Comments: 2

Draw the graph of : x=∣y∣ (√(1−y^2 ))

$${Draw}\:{the}\:{graph}\:{of}\:: \\ $$$${x}=\mid{y}\mid\:\sqrt{\mathrm{1}−{y}^{\mathrm{2}} } \\ $$

Question Number 74678    Answers: 1   Comments: 0

A 5kg block rests on a 30° incline.The coefficient of static friction between the block and incline is 0.20.How large a horizontal force must push on the block if the block is to be on the verge of sliding (a)up the incline (b) down the incline?

$${A}\:\mathrm{5}{kg}\:{block}\:{rests}\:{on}\:{a}\:\mathrm{30}°\:{incline}.{The} \\ $$$${coefficient}\:{of}\:{static}\:{friction}\:{between} \\ $$$${the}\:{block}\:{and}\:{incline}\:{is}\:\mathrm{0}.\mathrm{20}.{How}\:{large} \\ $$$${a}\:{horizontal}\:{force}\:{must}\:{push}\:{on}\:{the} \\ $$$${block}\:{if}\:{the}\:{block}\:{is}\:{to}\:{be}\:{on}\:{the}\:{verge}\:{of} \\ $$$${sliding}\:\left({a}\right){up}\:{the}\:{incline}\:\left({b}\right)\:{down}\:{the} \\ $$$${incline}? \\ $$

Question Number 71852    Answers: 1   Comments: 0

show that 5^(22) + 17^(22) ≡ 6 (mod 11)

$${show}\:{that}\:\mathrm{5}^{\mathrm{22}} \:+\:\mathrm{17}^{\mathrm{22}} \:\equiv\:\mathrm{6}\:\left({mod}\:\mathrm{11}\right) \\ $$

Question Number 71850    Answers: 2   Comments: 0

∫ln(x^x^x .e^x^x )dx=?

$$\int\mathrm{ln}\left(\mathrm{x}^{\mathrm{x}^{\mathrm{x}} } .\mathrm{e}^{\mathrm{x}^{\mathrm{x}} } \right)\mathrm{dx}=? \\ $$

Question Number 71849    Answers: 1   Comments: 0

$$ \\ $$

Question Number 71838    Answers: 1   Comments: 3

solve the system of linear congruences x ≡ 2 (mod 3) x ≡ 4(mod 5) x ≡ 7 (mod 9) x≡ 11( mod 13) using the Brute force method

$${solve}\:{the}\:{system}\:{of}\:{linear}\:{congruences}\: \\ $$$$\:{x}\:\equiv\:\mathrm{2}\:\left({mod}\:\mathrm{3}\right) \\ $$$${x}\:\equiv\:\mathrm{4}\left({mod}\:\mathrm{5}\right) \\ $$$${x}\:\equiv\:\mathrm{7}\:\left({mod}\:\mathrm{9}\right) \\ $$$${x}\equiv\:\mathrm{11}\left(\:{mod}\:\mathrm{13}\right) \\ $$$${using}\:{the}\:{Brute}\:{force}\:{method} \\ $$

Question Number 71831    Answers: 1   Comments: 2

Question Number 71824    Answers: 2   Comments: 1

solve x^x^x^(2019) =2019

$${solve}\: \\ $$$${x}^{{x}^{{x}^{\mathrm{2019}} } } =\mathrm{2019} \\ $$

Question Number 71819    Answers: 1   Comments: 3

There are 3 tangent circumferences inscribed in an isosceles right triangle Two of these circumferences have radius R and are tangent to the hypotenuse and to the two cathetus. The smaller circumference has radius r and is tangent to the two cathetus. How can I find the radius of the smaller circumference as a function of R? (I want a tip on how to solve the problem).

$${There}\:{are}\:\mathrm{3}\:{tangent}\:{circumferences} \\ $$$${inscribed}\:{in}\:{an}\:{isosceles}\:{right}\:{triangle} \\ $$$${Two}\:{of}\:{these}\:{circumferences}\:{have} \\ $$$${radius}\:\boldsymbol{{R}}\:{and}\:{are}\:{tangent}\:{to}\:{the}\: \\ $$$${hypotenuse}\:{and}\:{to}\:{the}\:{two}\:{cathetus}. \\ $$$${The}\:{smaller}\:{circumference}\:{has}\: \\ $$$${radius}\:\boldsymbol{{r}}\:{and}\:{is}\:{tangent}\:{to}\:{the}\:{two} \\ $$$${cathetus}.\:{How}\:{can}\:{I}\:{find}\:{the}\:{radius} \\ $$$${of}\:{the}\:{smaller}\:{circumference}\:{as}\:{a} \\ $$$${function}\:{of}\:\boldsymbol{{R}}? \\ $$$$\left({I}\:{want}\:{a}\:{tip}\:{on}\:{how}\:{to}\:{solve}\:{the}\:\right. \\ $$$$\left.{problem}\right). \\ $$

Question Number 71816    Answers: 1   Comments: 0

suppose that f is continuous and differentiable in (a,b) if f′(x) =0 ,∀ x∈(a,b) then show that f is constant on [a,b].

$${suppose}\:{that}\:{f}\:{is}\:{continuous}\:{and}\:{differentiable}\:{in}\:\left({a},{b}\right)\:{if}\:{f}'\left({x}\right)\:=\mathrm{0}\:,\forall\:{x}\in\left({a},{b}\right)\:{then}\:{show}\:{that}\:{f}\:{is}\:{constant}\:{on}\:\left[{a},{b}\right]. \\ $$

Question Number 71814    Answers: 1   Comments: 2

∫(1/(1+cot x))dx

$$\int\frac{\mathrm{1}}{\mathrm{1}+\mathrm{cot}\:{x}}{dx} \\ $$

Question Number 71813    Answers: 0   Comments: 0

1)calculate F(a)=∫_0 ^(π/4) arctan(1+a cosx)dx 2)find the valeur of ∫_0 ^(π/4) arctan(1+(√2)cosx)dx

$$\left.\mathrm{1}\right){calculate}\:{F}\left({a}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {arctan}\left(\mathrm{1}+{a}\:{cosx}\right){dx} \\ $$$$\left.\mathrm{2}\right){find}\:{the}\:{valeur}\:{of}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{arctan}\left(\mathrm{1}+\sqrt{\mathrm{2}}{cosx}\right){dx} \\ $$

Question Number 71810    Answers: 0   Comments: 0

Question Number 71809    Answers: 1   Comments: 0

  Pg 1386      Pg 1387      Pg 1388      Pg 1389      Pg 1390      Pg 1391      Pg 1392      Pg 1393      Pg 1394      Pg 1395   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com