Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1388
Question Number 70163 Answers: 1 Comments: 0
Question Number 70162 Answers: 1 Comments: 0
Question Number 70161 Answers: 1 Comments: 0
Question Number 70159 Answers: 1 Comments: 1
Question Number 70150 Answers: 0 Comments: 1
$${prove}\:{that}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \sqrt{\left(\mathrm{4}−{sin}^{\mathrm{2}} {x}\right)}{dx}\:<\:\frac{\pi\sqrt{\mathrm{14}}}{\mathrm{4}} \\ $$
Question Number 70147 Answers: 1 Comments: 4
$${Consider}\:{the}\:{functions}\: \\ $$$${f}\left({x}\right)=\mathrm{5}×\mathrm{4}^{−{x}} \:{and}\:{g}\left({x}\right)=\left(\mathrm{0}.\mathrm{25}\right)^{\mathrm{2}{x}} +\mathrm{4} \\ $$$${For}\:{what}\:{values}\:{of}\:{x}\:{do}\:{these}\: \\ $$$${functions}\:{assume}\:{equal}\:{values}? \\ $$
Question Number 70145 Answers: 1 Comments: 0
$${prove}\:{that}\:;\:{arg}\left(\boldsymbol{{z}}\mathrm{1}\boldsymbol{{z}}\mathrm{2}\right)={arg}\left({z}\mathrm{1}\right)+{arg}\left({z}\mathrm{2}\right). \\ $$$${arg}\left({z}\mathrm{1}/{z}\mathrm{2}\right)={arg}\left({z}\mathrm{1}\right)−{arg}\left({z}\mathrm{2}\right). \\ $$
Question Number 70138 Answers: 1 Comments: 0
$${prove}\:{that}\:\:\:{e}^{{i}\theta} ={e}^{{i}\left(\theta+\mathrm{2}{k}\Pi\right)} \:\:{given}\:{that}\:{k}=\mathrm{0},\pm\mathrm{1},\pm\mathrm{2}... \\ $$
Question Number 70135 Answers: 0 Comments: 1
$${sophie}−{Germain}\:{identity} \\ $$$${a}^{\mathrm{4}} +\mathrm{4}{b}^{\mathrm{4}} =\left(\left({a}+{b}\right)^{\mathrm{2}} +{b}^{\mathrm{2}} \right)\left(\left({a}−{b}\right)^{\mathrm{2}} +{b}^{\mathrm{2}} \right) \\ $$
Question Number 70132 Answers: 1 Comments: 1
$$\underset{{n}=\mathrm{1}} {\overset{\mathrm{3050}} {\sum}}\:{i}^{{n}} \\ $$
Question Number 70121 Answers: 1 Comments: 0
Question Number 70108 Answers: 1 Comments: 0
Question Number 70103 Answers: 2 Comments: 0
$$\mathrm{if}\:\mathrm{m}^{\mathrm{3}} +\mathrm{2p}^{\mathrm{3}} =\mathrm{3mn},\:\mathrm{a}^{\mathrm{3}} +\mathrm{b}^{\mathrm{3}} =\mathrm{p}^{\mathrm{3}} \:\mathrm{and} \\ $$$$\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} =\mathrm{n}\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that}\:\mathrm{a}+\mathrm{b}=\mathrm{m}. \\ $$
Question Number 70075 Answers: 0 Comments: 3
Question Number 70074 Answers: 1 Comments: 1
$$\int_{\mathrm{1}} ^{\mathrm{2}} \left[\mathrm{3}+\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\right]{dt}= \\ $$
Question Number 70069 Answers: 1 Comments: 2
$$\underset{{n}=\mathrm{1}} {\overset{\mathrm{5}} {\prod}}\frac{\left(\mathrm{12}{n}−\mathrm{2}\right)^{\mathrm{4}} +\mathrm{18}^{\mathrm{2}} }{\left(\mathrm{12}{n}−\mathrm{8}\right)^{\mathrm{4}} +\mathrm{18}^{\mathrm{2}} } \\ $$$$=\frac{\left(\mathrm{10}^{\mathrm{4}} +\mathrm{324}\right)\left(\mathrm{22}^{\mathrm{4}} +\mathrm{324}\right)\left(\mathrm{34}^{\mathrm{4}} +\mathrm{324}\right)\left(\mathrm{46}^{\mathrm{4}} +\mathrm{324}\right)\left(\mathrm{58}^{\mathrm{4}} +\mathrm{324}\right)}{\left(\mathrm{4}^{\mathrm{4}} +\mathrm{324}\right)\left(\mathrm{16}^{\mathrm{4}} +\mathrm{324}\right)\left(\mathrm{28}^{\mathrm{4}} +\mathrm{324}\right)\left(\mathrm{40}^{\mathrm{4}} +\mathrm{324}\right)\left(\mathrm{52}^{\mathrm{4}} +\mathrm{324}\right)} \\ $$
Question Number 70066 Answers: 2 Comments: 0
$${Solve} \\ $$$$\left.\mathrm{a}\right)\:{e}^{\mathrm{2}{x}} −{e}^{{x}+\mathrm{1}} −{e}^{{x}} +{e}<\mathrm{0} \\ $$$$\left.\mathrm{b}\right)\mathrm{4}.\mathrm{2}^{\mathrm{2}{x}} −\mathrm{9}.\mathrm{2}^{{x}} <−\mathrm{2} \\ $$$$\left.{c}\right)\mathrm{9}^{{x}} −\mathrm{4}.\mathrm{3}^{{x}+\mathrm{1}} +\mathrm{27}>\mathrm{0} \\ $$$$ \\ $$
Question Number 70048 Answers: 1 Comments: 6
Question Number 70044 Answers: 0 Comments: 1
$$\sqrt{\mathrm{2016}\:+\:\mathrm{2007}\sqrt{\mathrm{2018}\:+\:\mathrm{2009}\sqrt{\mathrm{2020}\:+\:\mathrm{2011}\sqrt{\mathrm{2022}\:+\:\ldots}}}}\:\:=\:\:... \\ $$
Question Number 70040 Answers: 1 Comments: 3
$$\mathrm{If},\:\mathrm{a}^{\mathrm{2}} \mathrm{b}^{\mathrm{2}} \mathrm{c}^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{a}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{b}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{c}^{\mathrm{3}} }\right)=\mathrm{a}^{\mathrm{3}} +\mathrm{b}^{\mathrm{3}} +\mathrm{c}^{\mathrm{3}} \:\mathrm{than} \\ $$$$\mathrm{prove}\:\mathrm{that}\:\mathrm{a},\mathrm{b},\mathrm{c}\:\mathrm{Successive}\:\mathrm{Proportional}. \\ $$
Question Number 70035 Answers: 0 Comments: 4
Question Number 70031 Answers: 0 Comments: 0
$$\int\left[{x}\right]{dx} \\ $$
Question Number 70030 Answers: 1 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{convergence}\:\mathrm{of} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\frac{\mathrm{1}}{{n}}\:+\:\mathrm{1}}{−{n}^{\mathrm{2}} } \\ $$
Question Number 70052 Answers: 1 Comments: 0
$$ \\ $$$$\mathrm{sin}\:{A}+\mathrm{sin}\:{B}={n}\:\:\:\:\:\:\:\:\:{and}\:\:\:\:\:\:\:\:\mathrm{cos}\:{A}+\mathrm{cos}\:{B}={m} \\ $$$$\mathrm{sin}\:\left({A}+{B}\right)=? \\ $$
Question Number 70051 Answers: 2 Comments: 0
$$\frac{{a}+{b}}{{c}}=\frac{{cos}\left(\frac{{a}−{b}}{\mathrm{2}}\right)}{{cos}\frac{{c}}{\mathrm{2}}} \\ $$
Question Number 70025 Answers: 0 Comments: 1
$${use}\:\varepsilon-\delta\:{defintion}\:{to}\:{prove}\:{that} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\sqrt{\mathrm{1}+{x}}−\sqrt{\mathrm{1}−{x}}}{{x}}=\mathrm{1} \\ $$
Pg 1383 Pg 1384 Pg 1385 Pg 1386 Pg 1387 Pg 1388 Pg 1389 Pg 1390 Pg 1391 Pg 1392
Terms of Service
Privacy Policy
Contact: info@tinkutara.com