Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1387
Question Number 66098 Answers: 0 Comments: 1
Question Number 66096 Answers: 0 Comments: 2
$$\int\:\:\frac{\sqrt{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)}}{\mathrm{x}^{\mathrm{2}} }\:\mathrm{dx}\:=\:? \\ $$
Question Number 66090 Answers: 1 Comments: 0
$$\:\underset{\:\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\:\frac{\mathrm{sin}^{\mathrm{2}} {x}}{\mathrm{sin}\:{x}+\mathrm{cos}\:{x}}\:{dx}\:= \\ $$
Question Number 66089 Answers: 0 Comments: 0
$$ \\ $$
Question Number 66085 Answers: 0 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{arctan}\left(\sqrt{{x}^{\mathrm{2}} +\mathrm{2}}\right)}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)\sqrt{{x}^{\mathrm{2}} \:+\mathrm{2}}}{dx} \\ $$
Question Number 66084 Answers: 1 Comments: 1
$${How}\:{to}\:{solve}\:{this}\:{limit}? \\ $$$$\underset{{x}\rightarrow\infty} {{lim}}\left(\mathrm{7}{x}+\frac{\mathrm{2}}{{x}}\right)^{{x}} \\ $$
Question Number 66082 Answers: 0 Comments: 3
Question Number 66071 Answers: 1 Comments: 0
$$\mathrm{Evaluate}\:\mathrm{the}\:\mathrm{integral}\:\mathrm{as}\:\mathrm{a}\:\mathrm{limit}\:\mathrm{of}\:\mathrm{sums}: \\ $$$$\mathrm{1}.\int_{\mathrm{1}} ^{\mathrm{3}} \left({e}^{\mathrm{2}−\mathrm{3}{x}} +{x}^{\mathrm{2}} +\mathrm{1}\right){dx} \\ $$
Question Number 66066 Answers: 0 Comments: 0
$${Integrate}\:\int\frac{{dx}}{{ax}^{\mathrm{2}} +{bx}+{c}} \\ $$$${y}\:=\:{ax}^{\mathrm{2}} +{bx}+{c} \\ $$$${y}'=\frac{{dy}}{{dx}}=\mathrm{2}{ax}+{b} \\ $$$${d}\:=\:\sqrt{{b}^{\mathrm{2}} −\mathrm{4}{ac}} \\ $$$${d}'\:=\:\sqrt{−{d}} \\ $$$${Case}\:\mathrm{1}.\:{d}^{\mathrm{2}} \:<\:\mathrm{0} \\ $$$${I}=\frac{\mathrm{2}}{{d}'}{tan}^{−\mathrm{1}} \frac{{y}'}{{d}'}+{C}\:\:\:\left[{tan}^{−\mathrm{1}} \alpha={arctan}\:\alpha\right] \\ $$$${Case}\:\mathrm{2}.\:{d}^{\mathrm{2}} =\mathrm{0} \\ $$$${I}=\frac{−\mathrm{2}}{{y}'}+{C} \\ $$$${Case}\:\mathrm{3}.\:{d}^{\mathrm{2}} \:>\:\mathrm{0} \\ $$$${I}=\frac{\mathrm{1}}{{d}}\mathrm{ln}\mid\frac{{y}'−{d}}{{y}'+{d}}\mid+{C}\:\:\:\left[\mathrm{ln}\:{a}\:=\:\mathrm{log}_{{e}} \:{a}\right] \\ $$
Question Number 66065 Answers: 0 Comments: 2
$${find}\:{the}\:{value}\:{of}\:{U}_{{n}} =\int_{−\infty} ^{+\infty} {e}^{−{nx}^{\mathrm{2}} } {sin}\left({x}^{\mathrm{2}} −\mathrm{2}{x}\right){dx} \\ $$$${find}\:{nature}\:{of}\:{the}\:{serie}\:\Sigma\:{U}_{{n}} \:{and}\:\Sigma{e}^{−{n}^{\mathrm{2}} } {U}_{{n}} \\ $$
Question Number 66064 Answers: 0 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\int_{−\infty} ^{+\infty} \:{cos}\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right){dx} \\ $$
Question Number 66063 Answers: 0 Comments: 0
$${let}\:\:\:{x}^{\mathrm{2}} −{x}\:+{lnx}\:=\mathrm{0}\:\:\:\:\:{by}\:{using}\:{newton}\:{method}\:{find} \\ $$$${a}\:{approximate}\:{value}\:{of}\:{the}\:{roots}\:{of}\:{this}\:{equation}. \\ $$$$ \\ $$
Question Number 66062 Answers: 0 Comments: 3
$${let}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{dt}}{{ch}\left({t}\right)+{xsh}\left({t}\right)} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{determine}\:{g}\left({x}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dt}}{\left({ch}\left({t}\right)+{xsh}\left({t}\right)\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{dt}}{{ch}\left({t}\right)+\mathrm{3}{sh}\left({t}\right)}\:{and}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dt}}{\left\{{ch}\left({t}\right)+\mathrm{3}{sh}\left({t}\right)\right\}^{\mathrm{2}} } \\ $$
Question Number 66061 Answers: 0 Comments: 0
$${let}\:{f}\left({t}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{sinx}}{\mathrm{1}+{te}^{−{x}^{\mathrm{2}} } }{dx}\:\:\:\:{with}\:\mid{t}\mid<\mathrm{1} \\ $$$${developp}\:{f}\:{at}\:{integr}\:{serie}\:. \\ $$
Question Number 66060 Answers: 0 Comments: 3
$${let}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{{dt}}{{x}+{tant}}\:\:{with}\:{x}\:{real} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{aexplicit}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){find}\:{also}\:{g}\left({x}\right)\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{{dt}}{\left({x}+{tant}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{3}\right){give}\:{f}^{\left({n}\right)} \left({x}\right){at}\:{form}\:{of}\:{integral} \\ $$$$\left.\mathrm{4}\right){calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{{dt}}{\mathrm{2}+{tant}}\:\:{and}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{{dt}}{\left(\mathrm{2}+{tant}\right)^{\mathrm{2}} } \\ $$
Question Number 66058 Answers: 2 Comments: 5
$${If}\:\:\:\:{x}\:+\:\frac{\mathrm{1}}{{x}}=\mathrm{1} \\ $$$$ \\ $$$${find}\:{out}\:{value}:− \\ $$$$ \\ $$$$\:\:\:\:\frac{{x}^{\mathrm{20}} +{x}^{\mathrm{17}} +{x}^{\mathrm{14}} +{x}^{\mathrm{11}} }{{x}^{\mathrm{17}} +{x}^{\mathrm{14}} +{x}^{\mathrm{11}} +{x}^{\mathrm{8}} }\:\:\:\:=\:\:\:\:? \\ $$
Question Number 66055 Answers: 1 Comments: 1
Question Number 66048 Answers: 0 Comments: 1
$$\int\frac{{x}}{\sqrt{{ln}\left(\mathrm{1}/{x}\right)}}\:{dx} \\ $$
Question Number 66046 Answers: 0 Comments: 2
$${find}\:\frac{{dy}}{{dx}}\:{if}\:{y}={x}^{{x}^{{x}} } \\ $$$${help}\:{pls} \\ $$
Question Number 66044 Answers: 1 Comments: 0
Question Number 66036 Answers: 1 Comments: 0
Question Number 66032 Answers: 0 Comments: 2
$${simplify}\:\:{w}_{{n}} =\left(\mathrm{1}+{in}\right)^{{n}} −\left(\mathrm{1}−{in}\right)^{{n}} \:{with}\:{n}\:{integr}\:{natural} \\ $$
Question Number 66019 Answers: 2 Comments: 1
$$\underset{{x}\rightarrow\infty} {{lim}}\:\left(\mathrm{1}\:+\:\frac{\mathrm{2}}{{x}}\right)^{{x}} \:= \\ $$
Question Number 66018 Answers: 1 Comments: 1
$${prove}\:{by}\:{mathematical}\:{induction}\:{that}\: \\ $$$$\:\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{r}\left({r}\:+\:\mathrm{1}\right)\:=\:\frac{{n}}{\mathrm{3}}\left({n}\:+\:\mathrm{1}\right)\left({n}\:+\:\mathrm{2}\right) \\ $$
Question Number 66017 Answers: 0 Comments: 0
$${show}\:{that}\:{the}\:{equation}\:{xe}^{{x}} =\mathrm{1}\:{has}\:{a}\:{root}\:{between}\:\mathrm{0}.\mathrm{5}\:{and}\:\mathrm{0}.\mathrm{6}\:{starting} \\ $$$${with}\:\mathrm{0}.\mathrm{55}\:{as}\:{a}\:{first}\:{approximate}. \\ $$
Question Number 66016 Answers: 1 Comments: 6
$${Evaluate}\:\:\: \\ $$$${a}.\:\int_{\mathrm{1}} ^{\mathrm{2}} \:\left({lnx}\right)^{\mathrm{2}} {dx} \\ $$$${b}.\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{6}}} \:{sin}^{\mathrm{2}} {x}\:{cos}^{\mathrm{3}} {xdx} \\ $$
Pg 1382 Pg 1383 Pg 1384 Pg 1385 Pg 1386 Pg 1387 Pg 1388 Pg 1389 Pg 1390 Pg 1391
Terms of Service
Privacy Policy
Contact: info@tinkutara.com