Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1387
Question Number 73337 Answers: 0 Comments: 3
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{cos}\left({artan}\left(\mathrm{2}{x}\right)\right)}{\left(\mathrm{3}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx} \\ $$
Question Number 73336 Answers: 1 Comments: 1
$${find}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{t}} {ln}\left(\mathrm{1}+{e}^{{t}} \right){dt} \\ $$
Question Number 73335 Answers: 1 Comments: 2
$${eplcit}\:\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left({x}+{t}+{t}^{\mathrm{2}} \right){dt}\:\:\:\:\:\:{with}\:{x}>\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\left.\mathrm{2}\right){calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left({t}^{\mathrm{2}} \:+{t}\:+\sqrt{\mathrm{2}}\right){dt} \\ $$
Question Number 73334 Answers: 1 Comments: 0
$${calculate}\:{lim}_{{n}\rightarrow+\infty} \:\:\:{n}^{\mathrm{2}} \left(\:{e}^{{sin}\left(\frac{\pi}{{n}^{\mathrm{2}} }\right)} −{cos}\left(\frac{\pi}{{n}}\right)\right) \\ $$
Question Number 73333 Answers: 0 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{cos}\left(\pi\:+\mathrm{2}{x}^{\mathrm{2}} \right)}{\left({x}^{\mathrm{2}} \:+\mathrm{4}\right)^{\mathrm{2}} }{dx} \\ $$
Question Number 73332 Answers: 0 Comments: 0
$${let}\:{U}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}} \:\frac{\left(−\mathrm{1}\right)^{{k}} }{\sqrt{\mathrm{2}{k}+\mathrm{1}}}\:\:{determine}\:{a}\:{equivalent}\:{of}\:{n}\:{when}\:{n}\rightarrow+\infty \\ $$
Question Number 73331 Answers: 0 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{ln}\left(\mathrm{1}+{e}^{−\mathrm{3}{x}^{\mathrm{2}} } \right)}{\mathrm{3}+{x}^{\mathrm{2}} }{dx} \\ $$
Question Number 73330 Answers: 1 Comments: 1
$${find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\frac{{ln}\left(\mathrm{2}−{cos}\left(\mathrm{2}{x}\right)\right)}{{ln}\left(\mathrm{1}+{xsin}\left(\mathrm{3}{x}\right)\right)} \\ $$
Question Number 73327 Answers: 0 Comments: 1
$${let}\:{w}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{lnt}}{\left({x}^{\mathrm{2}} \:+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{1}\right)\:{explicit}\:{w}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:{U}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{{lnt}}{\left({n}^{\mathrm{2}} \:+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{dt} \\ $$$${find}\:{lim}_{{n}\rightarrow+\infty} {n}^{\mathrm{4}} {U}_{{n}} \:\:{and}\:{determine}\:{nature}\:{of}\:{tbe}\:{serie}\:\Sigma\:{U}_{{n}} \\ $$
Question Number 73308 Answers: 0 Comments: 6
$${what}\:{are}\:{the}\:{solutions} \\ $$$${of}\:\sqrt{\mathrm{3}{x}^{\mathrm{2}} +\mathrm{1}}={n}\:{where}\:{n}\in\mathbb{N} \\ $$
Question Number 73297 Answers: 2 Comments: 1
Question Number 73295 Answers: 1 Comments: 0
$${How}\:\:{many}\:\:{solution}\:\:{so}\:\:{that} \\ $$$$\mathrm{3}{n}−\mathrm{4},\:\:\mathrm{4}{n}−\mathrm{5},\:\:\mathrm{5}{n}−\mathrm{13} \\ $$$${are}\:\:{prime}\:\:{numbers}\:? \\ $$
Question Number 73293 Answers: 2 Comments: 2
$${Explicit}\:\:{f}\left({x}\right)=\:\int_{\mathrm{1}} ^{\infty} \:\frac{{lnt}}{\left({x}^{\mathrm{2}} +{t}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{dt}\: \\ $$
Question Number 73279 Answers: 1 Comments: 0
Question Number 73275 Answers: 0 Comments: 2
$$ \\ $$$$ \\ $$$$\int\frac{\mathrm{4}}{{x}^{\mathrm{2}} \sqrt{\mathrm{4}−{x}\delta\varkappa}}\:\:\:\:? \\ $$$$ \\ $$
Question Number 73274 Answers: 0 Comments: 2
Question Number 73273 Answers: 1 Comments: 0
Question Number 73269 Answers: 0 Comments: 0
Question Number 73260 Answers: 1 Comments: 0
Question Number 73255 Answers: 1 Comments: 0
Question Number 73247 Answers: 1 Comments: 0
Question Number 73243 Answers: 1 Comments: 0
$${prove}\:{that}\:\:{for}\:{z}\:\in{C}\:\:\:{arctanz}\:=\frac{\mathrm{1}}{\mathrm{2}{i}}{ln}\left(\frac{\mathrm{1}+{iz}}{\mathrm{1}−{iz}}\right) \\ $$$$ \\ $$
Question Number 73238 Answers: 1 Comments: 1
$${let}\:\mathrm{0}<{a}<\mathrm{1}\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left({t}\right){t}^{{a}−\mathrm{1}} }{\mathrm{1}+{t}}{dt}\:\:{and}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}^{\mathrm{2}} \left({t}\right){t}^{{a}−\mathrm{1}} }{\mathrm{1}+{t}}{dt} \\ $$
Question Number 73235 Answers: 0 Comments: 0
Question Number 73261 Answers: 1 Comments: 1
$${calculate}\:\sum_{{n}=\mathrm{1}} ^{\infty} \left({n}^{\mathrm{4}} +\mathrm{2}{n}^{\mathrm{2}} −\mathrm{3}\right)\frac{{x}^{{n}} }{{n}!}\:{in}\:{case}\:{of}\:{convergence}. \\ $$
Question Number 73231 Answers: 1 Comments: 1
$${find}\:{the}\:{sum}\:{of}\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \left({n}^{\mathrm{2}} −\mathrm{3}{n}+\mathrm{1}\right){e}^{−{n}} \\ $$
Pg 1382 Pg 1383 Pg 1384 Pg 1385 Pg 1386 Pg 1387 Pg 1388 Pg 1389 Pg 1390 Pg 1391
Terms of Service
Privacy Policy
Contact: info@tinkutara.com