Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1387

Question Number 63372    Answers: 1   Comments: 2

For what values of a and b will the integral ∫_a ^b (√(10−x−x^2 ))dx be at maximum

$${For}\:{what}\:{values}\:{of}\:{a}\:{and}\:{b}\:{will}\:{the} \\ $$$${integral}\:\int_{{a}} ^{{b}} \sqrt{\mathrm{10}−{x}−{x}^{\mathrm{2}} }{dx}\:{be}\:{at} \\ $$$${maximum} \\ $$

Question Number 63373    Answers: 0   Comments: 2

just found this on the web I thought it might help in some cases where quartics appear i.e. Sir Aifour′s geometric questions. sometimes we know the nature of the roots, but how to use this information? ax^4 +bx^3 +cx^2 +dx+e=0 1. divide by a 2. x=z−(b/(4a)) this leads to the reduced z^4 +pz^2 +qz+r=0 now we find the nature of the roots: T_1 =16p^4 r−4p^3 q^2 −128p^2 r^2 +144pq^2 r−27q^4 +256r^3 T_2 =p^2 +12r T_3 =−p^2 +4r T_1 <0 ⇒ 2 distinct real and 2 conjugated complex roots T_1 >0∧(p<0∧T_3 <0) ⇒ 4 distinct real roots T_1 >0∧(p>0∨T_3 >0) ⇒ 2 pairs of conjugated complex roots T_1 =0∧(p<0∧T_3 <0∧T_2 ≠0) ⇒ 1 real double and 2 real simple roots T_1 =0∧(T_3 >0∨(p>0∧(T_3 ≠0∨q≠0))) ⇒ 1 real double and 2 conjugated complex roots T_1 =0∧(T_2 =0∧T_3 ≠0) ⇒ 1 real triple and 1 real simple roots T_1 =0∧(T_3 =0∧p<0) ⇒ 2 real double roots T_1 =0∧(T_3 =0∧p>0∧q=0) ⇒ 2 conjugated complex double roots T_1 =0∧T_2 =0 ⇒ all roots are equal

$$\mathrm{just}\:\mathrm{found}\:\mathrm{this}\:\mathrm{on}\:\mathrm{the}\:\mathrm{web} \\ $$$$\mathrm{I}\:\mathrm{thought}\:\mathrm{it}\:\mathrm{might}\:\mathrm{help}\:\mathrm{in}\:\mathrm{some}\:\mathrm{cases}\:\mathrm{where} \\ $$$$\mathrm{quartics}\:\mathrm{appear}\:\mathrm{i}.\mathrm{e}.\:\mathrm{Sir}\:\mathrm{Aifour}'\mathrm{s}\:\mathrm{geometric} \\ $$$$\mathrm{questions}.\:\mathrm{sometimes}\:\mathrm{we}\:\mathrm{know}\:\mathrm{the}\:\mathrm{nature}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{roots},\:\mathrm{but}\:\mathrm{how}\:\mathrm{to}\:\mathrm{use}\:\mathrm{this}\:\mathrm{information}? \\ $$$$ \\ $$$${ax}^{\mathrm{4}} +{bx}^{\mathrm{3}} +{cx}^{\mathrm{2}} +{dx}+{e}=\mathrm{0} \\ $$$$\mathrm{1}.\:\mathrm{divide}\:\mathrm{by}\:{a} \\ $$$$\mathrm{2}.\:{x}={z}−\frac{{b}}{\mathrm{4}{a}} \\ $$$$\mathrm{this}\:\mathrm{leads}\:\mathrm{to}\:\mathrm{the}\:\mathrm{reduced} \\ $$$$ \\ $$$${z}^{\mathrm{4}} +{pz}^{\mathrm{2}} +{qz}+{r}=\mathrm{0} \\ $$$$ \\ $$$$\mathrm{now}\:\mathrm{we}\:\mathrm{find}\:\mathrm{the}\:\mathrm{nature}\:\mathrm{of}\:\mathrm{the}\:\mathrm{roots}: \\ $$$${T}_{\mathrm{1}} =\mathrm{16}{p}^{\mathrm{4}} {r}−\mathrm{4}{p}^{\mathrm{3}} {q}^{\mathrm{2}} −\mathrm{128}{p}^{\mathrm{2}} {r}^{\mathrm{2}} +\mathrm{144}{pq}^{\mathrm{2}} {r}−\mathrm{27}{q}^{\mathrm{4}} +\mathrm{256}{r}^{\mathrm{3}} \\ $$$${T}_{\mathrm{2}} ={p}^{\mathrm{2}} +\mathrm{12}{r} \\ $$$${T}_{\mathrm{3}} =−{p}^{\mathrm{2}} +\mathrm{4}{r} \\ $$$${T}_{\mathrm{1}} <\mathrm{0}\:\Rightarrow\:\mathrm{2}\:\mathrm{distinct}\:\mathrm{real}\:\mathrm{and}\:\mathrm{2}\:\mathrm{conjugated}\:\mathrm{complex}\:\mathrm{roots} \\ $$$${T}_{\mathrm{1}} >\mathrm{0}\wedge\left({p}<\mathrm{0}\wedge{T}_{\mathrm{3}} <\mathrm{0}\right)\:\Rightarrow\:\mathrm{4}\:\mathrm{distinct}\:\mathrm{real}\:\mathrm{roots} \\ $$$${T}_{\mathrm{1}} >\mathrm{0}\wedge\left({p}>\mathrm{0}\vee{T}_{\mathrm{3}} >\mathrm{0}\right)\:\Rightarrow\:\mathrm{2}\:\mathrm{pairs}\:\mathrm{of}\:\mathrm{conjugated}\:\mathrm{complex}\:\mathrm{roots} \\ $$$${T}_{\mathrm{1}} =\mathrm{0}\wedge\left({p}<\mathrm{0}\wedge{T}_{\mathrm{3}} <\mathrm{0}\wedge{T}_{\mathrm{2}} \neq\mathrm{0}\right)\:\Rightarrow\:\mathrm{1}\:\mathrm{real}\:\mathrm{double}\:\mathrm{and}\:\mathrm{2}\:\mathrm{real}\:\mathrm{simple}\:\mathrm{roots} \\ $$$${T}_{\mathrm{1}} =\mathrm{0}\wedge\left({T}_{\mathrm{3}} >\mathrm{0}\vee\left({p}>\mathrm{0}\wedge\left({T}_{\mathrm{3}} \neq\mathrm{0}\vee{q}\neq\mathrm{0}\right)\right)\right)\:\Rightarrow\:\mathrm{1}\:\mathrm{real}\:\mathrm{double}\:\mathrm{and}\:\mathrm{2}\:\mathrm{conjugated}\:\mathrm{complex}\:\mathrm{roots} \\ $$$${T}_{\mathrm{1}} =\mathrm{0}\wedge\left({T}_{\mathrm{2}} =\mathrm{0}\wedge{T}_{\mathrm{3}} \neq\mathrm{0}\right)\:\Rightarrow\:\mathrm{1}\:\mathrm{real}\:\mathrm{triple}\:\mathrm{and}\:\mathrm{1}\:\mathrm{real}\:\mathrm{simple}\:\mathrm{roots} \\ $$$${T}_{\mathrm{1}} =\mathrm{0}\wedge\left({T}_{\mathrm{3}} =\mathrm{0}\wedge{p}<\mathrm{0}\right)\:\Rightarrow\:\mathrm{2}\:\mathrm{real}\:\mathrm{double}\:\mathrm{roots} \\ $$$${T}_{\mathrm{1}} =\mathrm{0}\wedge\left({T}_{\mathrm{3}} =\mathrm{0}\wedge{p}>\mathrm{0}\wedge{q}=\mathrm{0}\right)\:\Rightarrow\:\mathrm{2}\:\mathrm{conjugated}\:\mathrm{complex}\:\mathrm{double}\:\mathrm{roots} \\ $$$${T}_{\mathrm{1}} =\mathrm{0}\wedge{T}_{\mathrm{2}} =\mathrm{0}\:\Rightarrow\:\mathrm{all}\:\mathrm{roots}\:\mathrm{are}\:\mathrm{equal} \\ $$

Question Number 63336    Answers: 2   Comments: 1

Question Number 63324    Answers: 1   Comments: 0

Question Number 63399    Answers: 1   Comments: 1

if α and β are the roots of 4x^(2 ) −6x+1===00====================== =0. find α^3 −β^3 .

$${if}\:\alpha\:{and}\:\beta\:{are}\:{the}\:{roots}\:{of}\:\mathrm{4}{x}^{\mathrm{2}\:} −\mathrm{6}{x}+\mathrm{1}===\mathrm{00}====================== \\ $$$$=\mathrm{0}.\:{find}\:\alpha^{\mathrm{3}} −\beta^{\mathrm{3}} . \\ $$

Question Number 63301    Answers: 1   Comments: 9

find (dy/dx) if x(x +y) = y^2

$${find}\:\frac{{dy}}{{dx}}\:{if}\:\:{x}\left({x}\:+{y}\right)\:=\:{y}^{\mathrm{2}} \\ $$

Question Number 63300    Answers: 0   Comments: 2

show that a) 1 + tan ((π/4) + A) = (2/(1−tanA)) b) 2cos2θsinθ + 9sinθ + 3 ≡ 11sinθ − 4sin^3 θ + 3

$${show}\:{that}\:\: \\ $$$$\left.{a}\right)\:\mathrm{1}\:+\:{tan}\:\left(\frac{\pi}{\mathrm{4}}\:+\:{A}\right)\:=\:\frac{\mathrm{2}}{\mathrm{1}−{tanA}} \\ $$$$\left.{b}\right)\:\mathrm{2}{cos}\mathrm{2}\theta{sin}\theta\:+\:\mathrm{9}{sin}\theta\:+\:\mathrm{3}\:\equiv\:\mathrm{11}{sin}\theta\:−\:\mathrm{4}{sin}^{\mathrm{3}} \theta\:+\:\mathrm{3} \\ $$

Question Number 63298    Answers: 0   Comments: 2

A particle P, moves on the curve with polar equation r = e^(kθ) , where (r,θ) are polar coordinates referred to a fixed pole and k is a positive constant. Given that the radial velocity of P is (k/r) show that the transverse acceleration of th particle is zero.

$${A}\:{particle}\:{P},\:{moves}\:{on}\:{the}\:{curve}\:{with}\:{polar}\:{equation}\:\: \\ $$$${r}\:=\:{e}^{{k}\theta} \:,\:{where}\:\left({r},\theta\right)\:{are}\:{polar}\:{coordinates}\:{referred}\:{to}\:{a}\:{fixed} \\ $$$${pole}\:{and}\:{k}\:{is}\:{a}\:{positive}\:{constant}.\:{Given}\:{that}\:{the}\:{radial}\:{velocity} \\ $$$${of}\:{P}\:{is}\:\frac{{k}}{{r}}\:\:{show}\:{that}\:{the}\:{transverse}\:{acceleration}\:{of}\:{th}\:{particle} \\ $$$${is}\:{zero}. \\ $$$$ \\ $$

Question Number 63296    Answers: 1   Comments: 1

A random Variable Y has probability function P, defined by P(y) = { (((y^2 /k) , y= 1,2,3)),(((((y−7)^2 )/k) , y= 4,5,6)),((0 , otherwise.)) :} Find (i) The value of the constant k. (ii) the mean and varriance of Y. (iii) The variance R, where R= 2Y −3.

$${A}\:{random}\:{Variable}\:{Y}\:{has}\:{probability}\:{function}\:{P},\:{defined}\:{by} \\ $$$$\:{P}\left({y}\right)\:=\:\begin{cases}{\frac{{y}^{\mathrm{2}} }{{k}}\:,\:{y}=\:\mathrm{1},\mathrm{2},\mathrm{3}}\\{\frac{\left({y}−\mathrm{7}\right)^{\mathrm{2}} }{{k}}\:,\:{y}=\:\mathrm{4},\mathrm{5},\mathrm{6}}\\{\mathrm{0}\:\:\:\:,\:{otherwise}.}\end{cases} \\ $$$${Find}\: \\ $$$$\left({i}\right)\:{The}\:{value}\:{of}\:{the}\:{constant}\:{k}. \\ $$$$\left({ii}\right)\:{the}\:{mean}\:{and}\:{varriance}\:{of}\:{Y}. \\ $$$$\left({iii}\right)\:{The}\:{variance}\:{R},\:{where}\:{R}=\:\mathrm{2}{Y}\:−\mathrm{3}. \\ $$

Question Number 63273    Answers: 0   Comments: 1

let F(x) =∫_x^2 ^x^3 ((sin(t))/(t+x)) dt 1) calculate lim_(x→0) F(x) and lim_(x→+∞) F(x) 2)calculste lim_(x→0) F^′ (x) and lim_(x→+∞) F^′ (x)

$${let}\:{F}\left({x}\right)\:=\int_{{x}^{\mathrm{2}} } ^{{x}^{\mathrm{3}} } \:\:\:\:\:\frac{{sin}\left({t}\right)}{{t}+{x}}\:{dt} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:{F}\left({x}\right)\:{and}\:{lim}_{{x}\rightarrow+\infty} {F}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){calculste}\:{lim}_{{x}\rightarrow\mathrm{0}} \:{F}^{'} \left({x}\right)\:{and}\:{lim}_{{x}\rightarrow+\infty} \:{F}^{'} \left({x}\right) \\ $$

Question Number 63261    Answers: 0   Comments: 6

∫x tan(x) dx

$$\int{x}\:{tan}\left({x}\right)\:{dx} \\ $$

Question Number 63247    Answers: 0   Comments: 1

Prove that (√(abc)) + (√((1−a)(1−b)(1−c))) ≤ 1 for 0 ≤ a,b,c ≤ 1

$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\sqrt{{abc}}\:+\:\sqrt{\left(\mathrm{1}−{a}\right)\left(\mathrm{1}−{b}\right)\left(\mathrm{1}−{c}\right)}\:\leqslant\:\mathrm{1} \\ $$$$\mathrm{for}\:\mathrm{0}\:\leqslant\:{a},{b},{c}\:\leqslant\:\mathrm{1} \\ $$

Question Number 63246    Answers: 0   Comments: 2

Arrange these digits: 1 1 2 2 3 3 4 4 So that the 1′s are four digit apart So that the 2′s are three digit apart So that the 3′s are two digit apart So that the 4′s are one digit apart

$$\mathrm{Arrange}\:\mathrm{these}\:\mathrm{digits}:\:\:\:\:\:\:\mathrm{1}\:\:\mathrm{1}\:\:\mathrm{2}\:\:\mathrm{2}\:\:\mathrm{3}\:\:\mathrm{3}\:\:\mathrm{4}\:\:\mathrm{4} \\ $$$$\:\:\:\:\:\:\mathrm{So}\:\mathrm{that}\:\mathrm{the}\:\mathrm{1}'\mathrm{s}\:\mathrm{are}\:\mathrm{four}\:\mathrm{digit}\:\mathrm{apart} \\ $$$$\:\:\:\:\:\:\mathrm{So}\:\mathrm{that}\:\mathrm{the}\:\mathrm{2}'\mathrm{s}\:\mathrm{are}\:\mathrm{three}\:\mathrm{digit}\:\mathrm{apart} \\ $$$$\:\:\:\:\:\:\mathrm{So}\:\mathrm{that}\:\mathrm{the}\:\mathrm{3}'\mathrm{s}\:\mathrm{are}\:\mathrm{two}\:\mathrm{digit}\:\mathrm{apart} \\ $$$$\:\:\:\:\:\:\mathrm{So}\:\mathrm{that}\:\mathrm{the}\:\mathrm{4}'\mathrm{s}\:\mathrm{are}\:\mathrm{one}\:\mathrm{digit}\:\mathrm{apart} \\ $$$$ \\ $$

Question Number 63256    Answers: 0   Comments: 3

Question Number 63233    Answers: 0   Comments: 4

Question Number 63232    Answers: 0   Comments: 2

let B(x,y) =∫_0 ^1 (1−t)^(x−1) t^(y−1) dt 1) study the convergence of B(x,y) 1) prove that B(x,y)=B(y,x) prove that B(x,y) =∫_0 ^∞ (t^(x−1) /((1+t)^(x+y) )) dt 2) prove that B(x,y) =((Γ(x).Γ(y))/(Γ(x+y))) 3) prove that Γ(x).Γ(1−x) =(π/(sin(πx))) for allx ∈]0,1[

$${let}\:{B}\left({x},{y}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{t}\right)^{{x}−\mathrm{1}} {t}^{{y}−\mathrm{1}} \:{dt} \\ $$$$\left.\mathrm{1}\right)\:{study}\:{the}\:{convergence}\:{of}\:{B}\left({x},{y}\right) \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:{B}\left({x},{y}\right)={B}\left({y},{x}\right) \\ $$$${prove}\:{that}\:{B}\left({x},{y}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}^{{x}−\mathrm{1}} }{\left(\mathrm{1}+{t}\right)^{{x}+{y}} }\:{dt} \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:{B}\left({x},{y}\right)\:=\frac{\Gamma\left({x}\right).\Gamma\left({y}\right)}{\Gamma\left({x}+{y}\right)} \\ $$$$\left.\mathrm{3}\left.\right)\:{prove}\:{that}\:\Gamma\left({x}\right).\Gamma\left(\mathrm{1}−{x}\right)\:=\frac{\pi}{{sin}\left(\pi{x}\right)}\:\:\:{for}\:{allx}\:\in\right]\mathrm{0},\mathrm{1}\left[\right. \\ $$

Question Number 63225    Answers: 0   Comments: 0

Question Number 63645    Answers: 0   Comments: 4

n integr natural prove that 5 divide n^5 −n

$${n}\:{integr}\:{natural}\:{prove}\:{that}\:\mathrm{5}\:{divide}\:{n}^{\mathrm{5}} −{n} \\ $$

Question Number 63251    Answers: 0   Comments: 0

∫_( 0) ^( (π/2)) sin^(−1) (m cosθ) dθ

$$\int_{\:\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \:\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{m}\:\mathrm{cos}\theta\right)\:\mathrm{d}\theta \\ $$

Question Number 63215    Answers: 0   Comments: 1

calculate lim_(n→+∞) {n (1+(1/n))^n −en}

$${calculate}\:{lim}_{{n}\rightarrow+\infty} \left\{{n}\:\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)^{{n}} −{en}\right\} \\ $$

Question Number 63214    Answers: 0   Comments: 1

calculate ∫_0 ^∞ x e^(−(x^2 /a^2 )) sin(bx)dx with a>0 and b>0

$${calculate}\:\:\int_{\mathrm{0}} ^{\infty} \:{x}\:{e}^{−\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }} \:\:{sin}\left({bx}\right){dx}\:\:{with}\:\:{a}>\mathrm{0}\:{and}\:{b}>\mathrm{0} \\ $$

Question Number 63267    Answers: 0   Comments: 3

lim_(n→∞) (((n^3 + 1)/(n^3 − 1)))^(2n − n^3 )

$$\:\:\:\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\:\left(\frac{\mathrm{n}^{\mathrm{3}} \:+\:\mathrm{1}}{\mathrm{n}^{\mathrm{3}} \:−\:\mathrm{1}}\right)^{\mathrm{2n}\:−\:\mathrm{n}^{\mathrm{3}} } \\ $$

Question Number 63206    Answers: 1   Comments: 1

Question Number 63203    Answers: 0   Comments: 5

Question Number 63268    Answers: 0   Comments: 0

Question Number 63194    Answers: 1   Comments: 0

  Pg 1382      Pg 1383      Pg 1384      Pg 1385      Pg 1386      Pg 1387      Pg 1388      Pg 1389      Pg 1390      Pg 1391   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com