Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1386

Question Number 73210    Answers: 1   Comments: 2

Question Number 73203    Answers: 0   Comments: 1

Question Number 73202    Answers: 2   Comments: 3

∫((2x^2 −1+2x(√(x^2 −1)))/(x^2 −x+(x−1)(√(x^2 −1))))dx=? ∫(dx/(x(√(x+1))(√((1−x)^3 ))))=?

$$\int\frac{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{1}+\mathrm{2}{x}\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}{{x}^{\mathrm{2}} −{x}+\left({x}−\mathrm{1}\right)\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}{dx}=? \\ $$$$\int\frac{{dx}}{{x}\sqrt{{x}+\mathrm{1}}\sqrt{\left(\mathrm{1}−{x}\right)^{\mathrm{3}} }}=? \\ $$

Question Number 73200    Answers: 0   Comments: 4

if lim_(x→0^+ ) f(x)=+∞ lim_(x→0^− ) f(x)=+∞ then lim_(x→0) f(x)=+∞ or lim_(x→0) f(x)=not exist

$${if}\:\: \\ $$$$ \\ $$$$\:\underset{{x}\rightarrow\mathrm{0}^{+} } {{lim}f}\left({x}\right)=+\infty \\ $$$$ \\ $$$$\underset{{x}\rightarrow\mathrm{0}^{−} } {{lim}f}\left({x}\right)=+\infty \\ $$$$ \\ $$$${then}\:\underset{{x}\rightarrow\mathrm{0}} {{lim}f}\left({x}\right)=+\infty\:{or}\:\underset{{x}\rightarrow\mathrm{0}} {{lim}f}\left({x}\right)={not}\:{exist} \\ $$

Question Number 73258    Answers: 1   Comments: 0

Question Number 73191    Answers: 1   Comments: 0

find x and y: { ((2x^y −x^(−y) =1)),((log_2 y=(√x))) :}

$${find}\:{x}\:{and}\:{y}: \\ $$$$\begin{cases}{\mathrm{2}{x}^{{y}} −{x}^{−{y}} =\mathrm{1}}\\{{log}_{\mathrm{2}} {y}=\sqrt{{x}}}\end{cases} \\ $$

Question Number 73251    Answers: 1   Comments: 0

Question Number 73188    Answers: 0   Comments: 0

Question Number 73182    Answers: 0   Comments: 3

calculate ∫_0 ^∞ xe^(−x^2 ) arctan(x−(1/x))dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:{xe}^{−{x}^{\mathrm{2}} } {arctan}\left({x}−\frac{\mathrm{1}}{{x}}\right){dx} \\ $$

Question Number 73181    Answers: 1   Comments: 1

calculate ∫_1 ^(3 ) ((x−2)/(√(x^2 +x+1)))dx

$${calculate}\:\int_{\mathrm{1}} ^{\mathrm{3}\:} \:\frac{{x}−\mathrm{2}}{\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}}}{dx} \\ $$

Question Number 73180    Answers: 0   Comments: 0

calculate ∫_0 ^∞ ((lnx)/((x+1)^3 ))dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{lnx}}{\left({x}+\mathrm{1}\right)^{\mathrm{3}} }{dx} \\ $$

Question Number 73179    Answers: 1   Comments: 1

caoculate ∫_0 ^∞ ((arctan(x^2 −1))/(2x^2 +1))dx

$${caoculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left({x}^{\mathrm{2}} −\mathrm{1}\right)}{\mathrm{2}{x}^{\mathrm{2}} \:+\mathrm{1}}{dx} \\ $$

Question Number 73178    Answers: 1   Comments: 0

calculate ∫_0 ^∞ ((ln(2+x^2 ))/(x^2 −x+1))dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left(\mathrm{2}+{x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} −{x}+\mathrm{1}}{dx} \\ $$

Question Number 73160    Answers: 1   Comments: 0

1+tanAtan(A/2)=tanAcot(A/2)−1=secA

$$\mathrm{1}+{tanAtan}\frac{{A}}{\mathrm{2}}={tanAcot}\frac{{A}}{\mathrm{2}}−\mathrm{1}={secA} \\ $$

Question Number 73155    Answers: 0   Comments: 0

reposting a former question... ∫(((x)^(1/5) −1)/((√x)+1))dx= [t=(x)^(1/(10)) → dx=10(x^9 )^(1/(10)) dx] =10∫((t^9 (t−1))/(t^4 −t^3 +t^2 −t+1))dt= =10∫(t^6 −t^4 −t)dt+10∫((t(t^2 −t+1))/(t^4 −t^3 +t^2 −t+1))dt= =((10)/7)t^7 −2t^5 −5t^2 +(5+(√5))∫(t/(t^2 −((1−(√5))/3)t+1))dt+(5−(√5))∫(t/(t^2 −((1+(√5))/2)t+1))dt= and it′s easy to solve these

$$\mathrm{reposting}\:\mathrm{a}\:\mathrm{former}\:\mathrm{question}... \\ $$$$\int\frac{\sqrt[{\mathrm{5}}]{{x}}−\mathrm{1}}{\sqrt{{x}}+\mathrm{1}}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\sqrt[{\mathrm{10}}]{{x}}\:\rightarrow\:{dx}=\mathrm{10}\sqrt[{\mathrm{10}}]{{x}^{\mathrm{9}} }{dx}\right] \\ $$$$=\mathrm{10}\int\frac{{t}^{\mathrm{9}} \left({t}−\mathrm{1}\right)}{{t}^{\mathrm{4}} −{t}^{\mathrm{3}} +{t}^{\mathrm{2}} −{t}+\mathrm{1}}{dt}= \\ $$$$=\mathrm{10}\int\left({t}^{\mathrm{6}} −{t}^{\mathrm{4}} −{t}\right){dt}+\mathrm{10}\int\frac{{t}\left({t}^{\mathrm{2}} −{t}+\mathrm{1}\right)}{{t}^{\mathrm{4}} −{t}^{\mathrm{3}} +{t}^{\mathrm{2}} −{t}+\mathrm{1}}{dt}= \\ $$$$=\frac{\mathrm{10}}{\mathrm{7}}{t}^{\mathrm{7}} −\mathrm{2}{t}^{\mathrm{5}} −\mathrm{5}{t}^{\mathrm{2}} +\left(\mathrm{5}+\sqrt{\mathrm{5}}\right)\int\frac{{t}}{{t}^{\mathrm{2}} −\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{3}}{t}+\mathrm{1}}{dt}+\left(\mathrm{5}−\sqrt{\mathrm{5}}\right)\int\frac{{t}}{{t}^{\mathrm{2}} −\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}{t}+\mathrm{1}}{dt}= \\ $$$$\mathrm{and}\:\mathrm{it}'\mathrm{s}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{these} \\ $$

Question Number 73147    Answers: 1   Comments: 1

∫((x−6)/(x^3 +1))dx

$$\int\frac{{x}−\mathrm{6}}{{x}^{\mathrm{3}} +\mathrm{1}}{dx} \\ $$$$ \\ $$

Question Number 73144    Answers: 1   Comments: 1

calculte ∫ ((x+(√(2+x^2 )))/(x+1−(√(2+x^2 ))))dx

$${calculte}\:\int\:\:\frac{{x}+\sqrt{\mathrm{2}+{x}^{\mathrm{2}} }}{{x}+\mathrm{1}−\sqrt{\mathrm{2}+{x}^{\mathrm{2}} }}{dx} \\ $$

Question Number 73137    Answers: 0   Comments: 8

Question Number 73131    Answers: 0   Comments: 2

solve for x,in terms of: a∈R . x+(√x)+(√(x^2 −a))+(√(x−a^2 ))=a^2

$$\boldsymbol{\mathrm{solve}}\:\boldsymbol{\mathrm{for}}\:\boldsymbol{\mathrm{x}},\boldsymbol{\mathrm{in}}\:\boldsymbol{\mathrm{terms}}\:\boldsymbol{\mathrm{of}}:\:\:\boldsymbol{\mathrm{a}}\in\boldsymbol{\mathrm{R}}\:. \\ $$$$\:\:\:\boldsymbol{\mathrm{x}}+\sqrt{\boldsymbol{\mathrm{x}}}+\sqrt{\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\boldsymbol{\mathrm{a}}}+\sqrt{\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{a}}^{\mathrm{2}} }=\boldsymbol{\mathrm{a}}^{\mathrm{2}} \\ $$

Question Number 73117    Answers: 2   Comments: 1

Question Number 73111    Answers: 1   Comments: 0

Question Number 73113    Answers: 1   Comments: 3

Question Number 73090    Answers: 2   Comments: 1

Question Number 73211    Answers: 0   Comments: 0

y=(c+3)(√x) +((3+d)/x)−((a+4)/x^(a+3) )

$${y}=\left({c}+\mathrm{3}\right)\sqrt{{x}}\:+\frac{\mathrm{3}+{d}}{{x}}−\frac{{a}+\mathrm{4}}{{x}^{{a}+\mathrm{3}} } \\ $$

Question Number 73080    Answers: 1   Comments: 0

y′′=e^y pls solve

$$\mathrm{y}''=\mathrm{e}^{\mathrm{y}} \\ $$$$\mathrm{pls}\:\mathrm{solve} \\ $$

Question Number 73059    Answers: 1   Comments: 3

let P_n (x)=(x+1)^n −(x−1)^n 1) fartorize inside C(x) P_n (x) 2)calculate Π_(k=1) ^p cotan(((kπ)/(2p+1)))

$${let}\:{P}_{{n}} \left({x}\right)=\left({x}+\mathrm{1}\right)^{{n}} −\left({x}−\mathrm{1}\right)^{{n}} \\ $$$$\left.\mathrm{1}\right)\:{fartorize}\:{inside}\:{C}\left({x}\right)\:{P}_{{n}} \left({x}\right) \\ $$$$\left.\mathrm{2}\right){calculate}\:\prod_{{k}=\mathrm{1}} ^{{p}} \:{cotan}\left(\frac{{k}\pi}{\mathrm{2}{p}+\mathrm{1}}\right) \\ $$

  Pg 1381      Pg 1382      Pg 1383      Pg 1384      Pg 1385      Pg 1386      Pg 1387      Pg 1388      Pg 1389      Pg 1390   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com