Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1386
Question Number 73210 Answers: 1 Comments: 2
Question Number 73203 Answers: 0 Comments: 1
Question Number 73202 Answers: 2 Comments: 3
$$\int\frac{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{1}+\mathrm{2}{x}\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}{{x}^{\mathrm{2}} −{x}+\left({x}−\mathrm{1}\right)\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}{dx}=? \\ $$$$\int\frac{{dx}}{{x}\sqrt{{x}+\mathrm{1}}\sqrt{\left(\mathrm{1}−{x}\right)^{\mathrm{3}} }}=? \\ $$
Question Number 73200 Answers: 0 Comments: 4
$${if}\:\: \\ $$$$ \\ $$$$\:\underset{{x}\rightarrow\mathrm{0}^{+} } {{lim}f}\left({x}\right)=+\infty \\ $$$$ \\ $$$$\underset{{x}\rightarrow\mathrm{0}^{−} } {{lim}f}\left({x}\right)=+\infty \\ $$$$ \\ $$$${then}\:\underset{{x}\rightarrow\mathrm{0}} {{lim}f}\left({x}\right)=+\infty\:{or}\:\underset{{x}\rightarrow\mathrm{0}} {{lim}f}\left({x}\right)={not}\:{exist} \\ $$
Question Number 73258 Answers: 1 Comments: 0
Question Number 73191 Answers: 1 Comments: 0
$${find}\:{x}\:{and}\:{y}: \\ $$$$\begin{cases}{\mathrm{2}{x}^{{y}} −{x}^{−{y}} =\mathrm{1}}\\{{log}_{\mathrm{2}} {y}=\sqrt{{x}}}\end{cases} \\ $$
Question Number 73251 Answers: 1 Comments: 0
Question Number 73188 Answers: 0 Comments: 0
Question Number 73182 Answers: 0 Comments: 3
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:{xe}^{−{x}^{\mathrm{2}} } {arctan}\left({x}−\frac{\mathrm{1}}{{x}}\right){dx} \\ $$
Question Number 73181 Answers: 1 Comments: 1
$${calculate}\:\int_{\mathrm{1}} ^{\mathrm{3}\:} \:\frac{{x}−\mathrm{2}}{\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}}}{dx} \\ $$
Question Number 73180 Answers: 0 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{lnx}}{\left({x}+\mathrm{1}\right)^{\mathrm{3}} }{dx} \\ $$
Question Number 73179 Answers: 1 Comments: 1
$${caoculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left({x}^{\mathrm{2}} −\mathrm{1}\right)}{\mathrm{2}{x}^{\mathrm{2}} \:+\mathrm{1}}{dx} \\ $$
Question Number 73178 Answers: 1 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left(\mathrm{2}+{x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} −{x}+\mathrm{1}}{dx} \\ $$
Question Number 73160 Answers: 1 Comments: 0
$$\mathrm{1}+{tanAtan}\frac{{A}}{\mathrm{2}}={tanAcot}\frac{{A}}{\mathrm{2}}−\mathrm{1}={secA} \\ $$
Question Number 73155 Answers: 0 Comments: 0
$$\mathrm{reposting}\:\mathrm{a}\:\mathrm{former}\:\mathrm{question}... \\ $$$$\int\frac{\sqrt[{\mathrm{5}}]{{x}}−\mathrm{1}}{\sqrt{{x}}+\mathrm{1}}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\sqrt[{\mathrm{10}}]{{x}}\:\rightarrow\:{dx}=\mathrm{10}\sqrt[{\mathrm{10}}]{{x}^{\mathrm{9}} }{dx}\right] \\ $$$$=\mathrm{10}\int\frac{{t}^{\mathrm{9}} \left({t}−\mathrm{1}\right)}{{t}^{\mathrm{4}} −{t}^{\mathrm{3}} +{t}^{\mathrm{2}} −{t}+\mathrm{1}}{dt}= \\ $$$$=\mathrm{10}\int\left({t}^{\mathrm{6}} −{t}^{\mathrm{4}} −{t}\right){dt}+\mathrm{10}\int\frac{{t}\left({t}^{\mathrm{2}} −{t}+\mathrm{1}\right)}{{t}^{\mathrm{4}} −{t}^{\mathrm{3}} +{t}^{\mathrm{2}} −{t}+\mathrm{1}}{dt}= \\ $$$$=\frac{\mathrm{10}}{\mathrm{7}}{t}^{\mathrm{7}} −\mathrm{2}{t}^{\mathrm{5}} −\mathrm{5}{t}^{\mathrm{2}} +\left(\mathrm{5}+\sqrt{\mathrm{5}}\right)\int\frac{{t}}{{t}^{\mathrm{2}} −\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{3}}{t}+\mathrm{1}}{dt}+\left(\mathrm{5}−\sqrt{\mathrm{5}}\right)\int\frac{{t}}{{t}^{\mathrm{2}} −\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}{t}+\mathrm{1}}{dt}= \\ $$$$\mathrm{and}\:\mathrm{it}'\mathrm{s}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{these} \\ $$
Question Number 73147 Answers: 1 Comments: 1
$$\int\frac{{x}−\mathrm{6}}{{x}^{\mathrm{3}} +\mathrm{1}}{dx} \\ $$$$ \\ $$
Question Number 73144 Answers: 1 Comments: 1
$${calculte}\:\int\:\:\frac{{x}+\sqrt{\mathrm{2}+{x}^{\mathrm{2}} }}{{x}+\mathrm{1}−\sqrt{\mathrm{2}+{x}^{\mathrm{2}} }}{dx} \\ $$
Question Number 73137 Answers: 0 Comments: 8
Question Number 73131 Answers: 0 Comments: 2
$$\boldsymbol{\mathrm{solve}}\:\boldsymbol{\mathrm{for}}\:\boldsymbol{\mathrm{x}},\boldsymbol{\mathrm{in}}\:\boldsymbol{\mathrm{terms}}\:\boldsymbol{\mathrm{of}}:\:\:\boldsymbol{\mathrm{a}}\in\boldsymbol{\mathrm{R}}\:. \\ $$$$\:\:\:\boldsymbol{\mathrm{x}}+\sqrt{\boldsymbol{\mathrm{x}}}+\sqrt{\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\boldsymbol{\mathrm{a}}}+\sqrt{\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{a}}^{\mathrm{2}} }=\boldsymbol{\mathrm{a}}^{\mathrm{2}} \\ $$
Question Number 73117 Answers: 2 Comments: 1
Question Number 73111 Answers: 1 Comments: 0
Question Number 73113 Answers: 1 Comments: 3
Question Number 73090 Answers: 2 Comments: 1
Question Number 73211 Answers: 0 Comments: 0
$${y}=\left({c}+\mathrm{3}\right)\sqrt{{x}}\:+\frac{\mathrm{3}+{d}}{{x}}−\frac{{a}+\mathrm{4}}{{x}^{{a}+\mathrm{3}} } \\ $$
Question Number 73080 Answers: 1 Comments: 0
$$\mathrm{y}''=\mathrm{e}^{\mathrm{y}} \\ $$$$\mathrm{pls}\:\mathrm{solve} \\ $$
Question Number 73059 Answers: 1 Comments: 3
$${let}\:{P}_{{n}} \left({x}\right)=\left({x}+\mathrm{1}\right)^{{n}} −\left({x}−\mathrm{1}\right)^{{n}} \\ $$$$\left.\mathrm{1}\right)\:{fartorize}\:{inside}\:{C}\left({x}\right)\:{P}_{{n}} \left({x}\right) \\ $$$$\left.\mathrm{2}\right){calculate}\:\prod_{{k}=\mathrm{1}} ^{{p}} \:{cotan}\left(\frac{{k}\pi}{\mathrm{2}{p}+\mathrm{1}}\right) \\ $$
Pg 1381 Pg 1382 Pg 1383 Pg 1384 Pg 1385 Pg 1386 Pg 1387 Pg 1388 Pg 1389 Pg 1390
Terms of Service
Privacy Policy
Contact: info@tinkutara.com