Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1385
Question Number 73518 Answers: 1 Comments: 1
Question Number 73503 Answers: 1 Comments: 2
Question Number 73619 Answers: 0 Comments: 16
Question Number 73499 Answers: 0 Comments: 2
Question Number 73495 Answers: 1 Comments: 0
$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }={c}^{\mathrm{2}} {x}^{\mathrm{2}} {y}\:\:\:\:\:\left({y}={a}\:,\:{x}=\mathrm{0}\:\right) \\ $$
Question Number 73491 Answers: 0 Comments: 1
$${calculate}\:\int_{−\infty} ^{+\infty} \:\:{e}^{−\mathrm{3}{x}^{\mathrm{2}} −\mathrm{2}{x}} \:{dx} \\ $$
Question Number 73490 Answers: 0 Comments: 0
$${calculate}\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\left({x}^{\mathrm{2}} \:+\frac{{a}}{{x}^{\mathrm{2}} }\right)} {dx}\:\:{with}\:{a}>\mathrm{0} \\ $$
Question Number 73489 Answers: 0 Comments: 0
$${calculate}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{arctan}\left(\mathrm{3}+{x}^{\mathrm{2}} \right)}{\left(\mathrm{2}\:{x}^{\mathrm{2}} +\mathrm{9}\right)^{\mathrm{2}} }{dx} \\ $$
Question Number 73488 Answers: 2 Comments: 1
$${solve}\:\:\:{xy}^{''} \:\:+\left({x}^{\mathrm{2}} −\mathrm{1}\right){y}^{'} \:\:={x}\:{e}^{−{x}^{\mathrm{2}} } \\ $$
Question Number 73487 Answers: 0 Comments: 1
$${let}\:\:\:\:\alpha\:{and}\:\beta\:{roots}\:{of}\:\:{the}\:{equation}\:\:{x}^{\mathrm{2}} −{x}+\mathrm{2}=\mathrm{0} \\ $$$${simplify}\:\:\:{A}_{{p}} =\:\alpha^{{p}} \:+\beta^{{p}} \:{and}\:{calculate} \\ $$$$\sum_{{p}=\mathrm{0}} ^{{n}−\mathrm{1}} \:{A}_{{p}} \:\:{and}\:\sum_{{p}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:{A}_{{p}} ^{\mathrm{2}} \\ $$
Question Number 73486 Answers: 0 Comments: 2
$${let}\:{P}\left({x}\right)=\left(\mathrm{1}+{ix}\right)^{{n}} −\left(\mathrm{1}−{ix}\right)^{{n}} \:{with}\:{n}\:{integr} \\ $$$${decompose}\:{the}\:{Fraction}\:{F}\:\left({x}\right)=\frac{\mathrm{1}}{{P}\left({x}\right)} \\ $$
Question Number 73485 Answers: 0 Comments: 0
$${find}\:{the}\:{roots}\:{of}\:{P}\left({x}\right)=\left(\mathrm{1}+{ix}\:+{jx}^{\mathrm{2}} \right)^{{n}} −\mathrm{1} \\ $$$${with}\:{j}\:={e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} \:\:\:{then}\:{factorize}\:{P}\left({x}\right)\:{inside}\:{C}\left[{x}\right] \\ $$$${decompose}\:{the}\:{fraction}\:{F}=\frac{\mathrm{1}}{{P}} \\ $$
Question Number 73484 Answers: 1 Comments: 0
$${decompose}\:{inside}\:{C}\left({x}\right)\:{the}\:{fraction} \\ $$$${F}\left({x}\right)=\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)^{{n}} } \\ $$$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:{F}\left({x}\right){dx} \\ $$
Question Number 73483 Answers: 1 Comments: 0
$${find}\:\int\:\:\:\:\frac{{dx}}{{x}+\mathrm{2}−\sqrt{{x}^{\mathrm{2}} −{x}\:+\mathrm{7}}} \\ $$
Question Number 73482 Answers: 1 Comments: 1
$${find}\:\int\:\:\:\:\frac{{dx}}{\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}+\sqrt{{x}^{\mathrm{2}} \:+\mathrm{3}}} \\ $$
Question Number 73481 Answers: 0 Comments: 0
$${find}\:\int\:\:{ln}\left({x}−{cosx}\right){dx} \\ $$
Question Number 73480 Answers: 0 Comments: 0
$${find}\:\int_{\mathrm{0}} ^{\infty} \:\:{xe}^{−{x}^{\mathrm{2}} } \:{arcran}\left({x}+\frac{\mathrm{1}}{{x}}\right){dx} \\ $$
Question Number 73479 Answers: 1 Comments: 1
$${find}\:\int\:\:\:\:\frac{\mathrm{3}{x}+\mathrm{2}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} \left({x}−\mathrm{2}\right)^{\mathrm{3}} }{dx} \\ $$
Question Number 73478 Answers: 1 Comments: 0
$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\:\frac{{x}^{\mathrm{3}} −\mathrm{3}}{\sqrt{{x}^{\mathrm{2}} −{x}\:+\mathrm{2}}}{dx} \\ $$
Question Number 73477 Answers: 1 Comments: 0
$${calculate}\:\int\:\:\:\frac{{x}^{\mathrm{3}} −\mathrm{4}{x}+\mathrm{5}}{{x}^{\mathrm{2}} −{x}\:+\mathrm{1}}{dx} \\ $$
Question Number 73474 Answers: 0 Comments: 0
$$\rceil\mathrm{888}>>>>>>> \\ $$
Question Number 73473 Answers: 0 Comments: 1
$${let}\:{z}\:{from}\:{C}\:{prove}\:{that}\: \\ $$$${arcsinz}=−{iln}\left({iz}+\sqrt{\mathrm{1}−{z}^{\mathrm{2}} }\right) \\ $$$${arccosz}\:=−{iln}\left({z}+\sqrt{{z}^{\mathrm{2}} −\mathrm{1}}\right) \\ $$
Question Number 73468 Answers: 1 Comments: 0
$$\mathrm{soit}\:\mathrm{le}\:\mathrm{systeme}\:\mathrm{suivant} \\ $$$$\begin{cases}{\mathrm{2s}+\mathrm{4c}+\mathrm{3t}=\mathrm{700}}\\{\mathrm{3s}+\mathrm{2c}+\mathrm{2t}=\mathrm{500}}\end{cases} \\ $$$$\:\:\mathrm{8s}+\mathrm{7c}+\mathrm{8t}=...?... \\ $$$$\mathrm{comment}\:\mathrm{determiner}\:\mathrm{le}\:\mathrm{resultat}\:...?...\: \\ $$$$\mathrm{de}\:\mathrm{la}\:\mathrm{3}^{\mathrm{e}} \mathrm{equation}\:? \\ $$
Question Number 73466 Answers: 1 Comments: 0
$${please}\:{explain}\:{this}\: \\ $$$$\:\underset{{x}\rightarrow\mathrm{0}} {{Lim}}\frac{{sinx}}{{x}}\:=\:\mathrm{1}\:\:{by}\:{l}'{hopitals}\:{theorem} \\ $$$$ \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {{Lim}}\:\frac{{sinx}}{{x}}\:=\:\mathrm{0}\:{by}\:{Squeez}\:{theorem} \\ $$$${is}\:{there}\:{something}\:{wrong}? \\ $$
Question Number 73451 Answers: 0 Comments: 3
Question Number 73441 Answers: 1 Comments: 0
Pg 1380 Pg 1381 Pg 1382 Pg 1383 Pg 1384 Pg 1385 Pg 1386 Pg 1387 Pg 1388 Pg 1389
Terms of Service
Privacy Policy
Contact: info@tinkutara.com