Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1385

Question Number 63565    Answers: 0   Comments: 0

Question Number 63564    Answers: 1   Comments: 0

Question Number 63561    Answers: 1   Comments: 0

Question Number 63560    Answers: 0   Comments: 2

developp at laurent series 1) f(z) =(1/(z−2)) 2)g(z) =(3/(z^2 −3z +2)) 3)h(z) =(1/(z^2 +4))

$${developp}\:{at}\:{laurent}\:{series} \\ $$$$\left.\mathrm{1}\right)\:{f}\left({z}\right)\:=\frac{\mathrm{1}}{{z}−\mathrm{2}} \\ $$$$\left.\mathrm{2}\right){g}\left({z}\right)\:=\frac{\mathrm{3}}{{z}^{\mathrm{2}} −\mathrm{3}{z}\:+\mathrm{2}} \\ $$$$\left.\mathrm{3}\right){h}\left({z}\right)\:=\frac{\mathrm{1}}{{z}^{\mathrm{2}} +\mathrm{4}} \\ $$

Question Number 63552    Answers: 1   Comments: 1

Calculate ∫_0 ^(1/2) x(√(x^2 +1)) dx+∫_(1/2) ^1 x^2 (√(x^3 +1)) dx+∫_1 ^2 x^3 (√(x^4 +1)) dx+∫_2 ^3 x^4 (√(x^5 +1 ))dx+...+∫_(78) ^(79) x^(80) (√(x^(81) +1)) dx+∫_(79) ^(80) x^(81) (√(x^(82) +1)) dx usingΣ_(n=2) ^(80) ∫_(n−1) ^n x^(n+1) (√(x^(n+2) +1))dx

$${Calculate}\:\underset{\mathrm{0}} {\overset{\frac{\mathrm{1}}{\mathrm{2}}} {\int}}{x}\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}\:{dx}+\underset{\frac{\mathrm{1}}{\mathrm{2}}} {\overset{\mathrm{1}} {\int}}{x}^{\mathrm{2}} \sqrt{{x}^{\mathrm{3}} +\mathrm{1}}\:{dx}+\underset{\mathrm{1}} {\overset{\mathrm{2}} {\int}}{x}^{\mathrm{3}} \sqrt{{x}^{\mathrm{4}} +\mathrm{1}}\:{dx}+\underset{\mathrm{2}} {\overset{\mathrm{3}} {\int}}{x}^{\mathrm{4}} \sqrt{{x}^{\mathrm{5}} +\mathrm{1}\:}{dx}+...+\underset{\mathrm{78}} {\overset{\mathrm{79}} {\int}}{x}^{\mathrm{80}} \sqrt{{x}^{\mathrm{81}} +\mathrm{1}}\:{dx}+\underset{\mathrm{79}} {\overset{\mathrm{80}} {\int}}{x}^{\mathrm{81}} \sqrt{{x}^{\mathrm{82}} +\mathrm{1}}\:{dx} \\ $$$${using}\underset{{n}=\mathrm{2}} {\overset{\mathrm{80}} {\sum}}\underset{{n}−\mathrm{1}} {\overset{{n}} {\int}}{x}^{{n}+\mathrm{1}} \sqrt{{x}^{{n}+\mathrm{2}} +\mathrm{1}}{dx} \\ $$

Question Number 63539    Answers: 1   Comments: 2

The minimum value of 2x^2 −3x+2 is ___.

$$\mathrm{The}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{2}{x}^{\mathrm{2}} −\mathrm{3}{x}+\mathrm{2}\:\mathrm{is}\:\_\_\_. \\ $$

Question Number 63536    Answers: 0   Comments: 1

a) if y= x^m (1−x)^n , where n∈ Z^+ , the set of positive integers, show that when (dy/dx)=0, x=(m/(m+n)) b)if y = 2(x−5)(√(x+4)) ,show that (dy/dx) = ((3(x+1))/((√(x+4)) )) c) solve the equation sinx−sin5x+cos3x = 0 for 0°≤x≤180°

$$\left.{a}\right)\:\:{if}\:{y}=\:{x}^{{m}} \left(\mathrm{1}−{x}\right)^{{n}} ,\:{where}\:{n}\in\:\mathbb{Z}^{+} ,\:{the}\:{set}\:{of}\:{positive}\:{integers}, \\ $$$${show}\:{that}\:{when}\:\frac{{dy}}{{dx}}=\mathrm{0},\:{x}=\frac{{m}}{{m}+{n}} \\ $$$$\left.{b}\right){if}\:{y}\:=\:\mathrm{2}\left({x}−\mathrm{5}\right)\sqrt{{x}+\mathrm{4}}\:,{show}\:{that}\:\frac{{dy}}{{dx}}\:=\:\frac{\mathrm{3}\left({x}+\mathrm{1}\right)}{\sqrt{{x}+\mathrm{4}}\:} \\ $$$$\left.{c}\right)\:{solve}\:{the}\:{equation}\:\:{sinx}−{sin}\mathrm{5}{x}+{cos}\mathrm{3}{x}\:=\:\mathrm{0}\:{for}\:\:\mathrm{0}°\leqslant{x}\leqslant\mathrm{180}° \\ $$

Question Number 63534    Answers: 1   Comments: 0

find the set of values of x for which y is real if y=(((x−2)(x−1))/(x+2)) , x≠−2, x∈R

$${find}\:{the}\:{set}\:{of}\:{values}\:{of}\:{x}\:{for}\:{which}\:{y}\:{is}\:{real}\:{if}\: \\ $$$$\:{y}=\frac{\left({x}−\mathrm{2}\right)\left({x}−\mathrm{1}\right)}{{x}+\mathrm{2}}\:,\:{x}\neq−\mathrm{2},\:{x}\in\mathbb{R} \\ $$

Question Number 63532    Answers: 1   Comments: 0

prove that there exist unique intergers p and s sucb that a = bp + s with −((∣b∣)/2)< s ≤((∣b∣)/2) hence find p and s given that a=49 and b=26

$${prove}\:{that}\:{there}\:{exist}\:{unique}\:{intergers}\:{p}\:{and}\:{s}\:{sucb}\:{that} \\ $$$${a}\:=\:{bp}\:+\:{s}\:{with}\:−\frac{\mid{b}\mid}{\mathrm{2}}<\:{s}\:\leqslant\frac{\mid{b}\mid}{\mathrm{2}} \\ $$$${hence}\:{find}\:{p}\:{and}\:{s}\:{given}\:{that}\:{a}=\mathrm{49}\:{and}\:{b}=\mathrm{26} \\ $$

Question Number 63522    Answers: 0   Comments: 2

Question Number 63519    Answers: 0   Comments: 4

consider the general definite intergral I_n =∫_0 ^(π/2) sin^n xdx a) prove that for n≥2, nI_n =(n−1)I_(n−2) . b) Find the values of i)∫_0 ^(π/2) sin^5 dx ii) ∫_0 ^(π/2) sin^6 dx

$${consider}\:{the}\:{general}\:{definite}\:{intergral}\:\: \\ $$$$\:{I}_{{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{{n}} {xdx} \\ $$$$\left.{a}\right)\:{prove}\:{that}\:{for}\:{n}\geqslant\mathrm{2},\:{nI}_{{n}} =\left({n}−\mathrm{1}\right){I}_{{n}−\mathrm{2}} . \\ $$$$\left.{b}\left.\right)\left.\:{Find}\:{the}\:{values}\:{of}\:\:\boldsymbol{{i}}\right)\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{5}} {dx}\:\:\:\boldsymbol{{ii}}\right)\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{6}} {dx} \\ $$

Question Number 63517    Answers: 1   Comments: 0

Given that ∣z−6∣=2∣z+6−9i∣, a) Use algebra to show that the locus of z is a circle, stating its center and its radius. b) sketch the locus z on an argand diagram.

$$\mathrm{Given}\:\mathrm{that}\:\:\mid{z}−\mathrm{6}\mid=\mathrm{2}\mid{z}+\mathrm{6}−\mathrm{9}{i}\mid, \\ $$$$\left.\mathrm{a}\right)\:\mathrm{Use}\:\mathrm{algebra}\:\mathrm{to}\:\mathrm{show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{locus}\:\mathrm{of}\:{z}\:\mathrm{is}\:\mathrm{a}\:\mathrm{circle}, \\ $$$$\mathrm{stating}\:\mathrm{its}\:\mathrm{center}\:\mathrm{and}\:\mathrm{its}\:\mathrm{radius}. \\ $$$$\left.\mathrm{b}\right)\:\mathrm{sketch}\:\mathrm{the}\:\mathrm{locus}\:{z}\:\mathrm{on}\:\mathrm{an}\:\mathrm{argand}\:\mathrm{diagram}. \\ $$

Question Number 63510    Answers: 0   Comments: 1

let f(x)=∫_0 ^∞ (t^(a−1) /(x+t)) dt with x>0 and 0<a<1 1)calculate f(x) 2)calculate g(x)=∫_0 ^∞ (t^(a−1) /((x+t)^2 ))dt 3)find the value of∫_0 ^∞ (t^(a−1) /((1+t)^2 ))dt

$${let}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\frac{{t}^{{a}−\mathrm{1}} }{{x}+{t}}\:{dt}\:{with}\:{x}>\mathrm{0} \\ $$$${and}\:\mathrm{0}<{a}<\mathrm{1} \\ $$$$\left.\mathrm{1}\right){calculate}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){calculate}\:{g}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\frac{{t}^{{a}−\mathrm{1}} }{\left({x}+{t}\right)^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{3}\right){find}\:{the}\:{value}\:{of}\int_{\mathrm{0}} ^{\infty} \:\frac{{t}^{{a}−\mathrm{1}} }{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} }{dt} \\ $$

Question Number 63509    Answers: 1   Comments: 1

calculate ∫_(−1) ^1 ((√(1+x^2 )) −(√(1−x^2 )))dx

$${calculate}\:\int_{−\mathrm{1}} ^{\mathrm{1}} \left(\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:−\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\right){dx} \\ $$

Question Number 63508    Answers: 0   Comments: 4

let f(x) =∫_(−∞) ^(+∞) (dt/((t^2 +ixt −1))) with ∣x∣>2 (i^2 =−1) 1) extract Re(f(x)) and Im(f(x)) 2) calculate f(x) 3) find olso g(x) =∫_(−∞) ^(+∞) (t/((t^2 +ixt −1)^2 ))dt 4) find values of integrals ∫_(−∞) ^(+∞) (dt/((t^2 +3it −1))) and ∫_(−∞) ^(+∞) ((tdt)/((t^2 +3it −1)^2 )) 5) give f^((n)) (x) at form of integrals.

$${let}\:\:{f}\left({x}\right)\:=\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{dt}}{\left({t}^{\mathrm{2}} \:+{ixt}\:−\mathrm{1}\right)}\:\:{with}\:\mid{x}\mid>\mathrm{2}\:\:\:\left({i}^{\mathrm{2}} =−\mathrm{1}\right) \\ $$$$\left.\mathrm{1}\right)\:{extract}\:{Re}\left({f}\left({x}\right)\right)\:{and}\:{Im}\left({f}\left({x}\right)\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{3}\right)\:\:{find}\:{olso}\:{g}\left({x}\right)\:=\int_{−\infty} ^{+\infty} \:\:\frac{{t}}{\left({t}^{\mathrm{2}} \:+{ixt}\:−\mathrm{1}\right)^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{4}\right)\:{find}\:{values}\:{of}\:{integrals}\:\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{dt}}{\left({t}^{\mathrm{2}} +\mathrm{3}{it}\:−\mathrm{1}\right)}\:\:{and}\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{tdt}}{\left({t}^{\mathrm{2}} \:+\mathrm{3}{it}\:−\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{5}\right)\:{give}\:{f}^{\left({n}\right)} \left({x}\right)\:{at}\:{form}\:{of}\:{integrals}. \\ $$

Question Number 63507    Answers: 1   Comments: 0

let U_n =∫_(1/n) ^1 ((√(x^2 +x+1)) −(√(x^2 −x+1)))dx (n>0) 1)calculate lim_(n→+∞) U_n 2) find nature of Σ U_n

$${let}\:{U}_{{n}} =\int_{\frac{\mathrm{1}}{{n}}} ^{\mathrm{1}} \left(\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}}\:−\sqrt{{x}^{\mathrm{2}} −{x}+\mathrm{1}}\right){dx}\:\:\:\left({n}>\mathrm{0}\right) \\ $$$$\left.\mathrm{1}\right){calculate}\:{lim}_{{n}\rightarrow+\infty} \:\:{U}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:\:{find}\:{nature}\:{of}\:\:\Sigma\:{U}_{{n}} \\ $$

Question Number 63490    Answers: 2   Comments: 1

A father with 8 children takes 3 at a time to the garden as often as he without taking the same 3 children together more than once. The number of times he will go to the garden is

$$\mathrm{A}\:\mathrm{father}\:\mathrm{with}\:\mathrm{8}\:\mathrm{children}\:\mathrm{takes}\:\mathrm{3}\:\mathrm{at}\:\mathrm{a}\: \\ $$$$\mathrm{time}\:\mathrm{to}\:\mathrm{the}\:\mathrm{garden}\:\mathrm{as}\:\mathrm{often}\:\mathrm{as}\:\mathrm{he} \\ $$$$\mathrm{without}\:\mathrm{taking}\:\mathrm{the}\:\mathrm{same}\:\mathrm{3}\:\mathrm{children} \\ $$$$\mathrm{together}\:\mathrm{more}\:\mathrm{than}\:\mathrm{once}.\:\mathrm{The}\:\mathrm{number} \\ $$$$\mathrm{of}\:\mathrm{times}\:\mathrm{he}\:\mathrm{will}\:\mathrm{go}\:\mathrm{to}\:\mathrm{the}\:\mathrm{garden}\:\mathrm{is} \\ $$

Question Number 63489    Answers: 0   Comments: 0

A father with 8 children takes 3 at a time to the garden as often as he without taking the same 3 children together more than once. The number of times he will go to the garden is

$$\mathrm{A}\:\mathrm{father}\:\mathrm{with}\:\mathrm{8}\:\mathrm{children}\:\mathrm{takes}\:\mathrm{3}\:\mathrm{at}\:\mathrm{a}\: \\ $$$$\mathrm{time}\:\mathrm{to}\:\mathrm{the}\:\mathrm{garden}\:\mathrm{as}\:\mathrm{often}\:\mathrm{as}\:\mathrm{he} \\ $$$$\mathrm{without}\:\mathrm{taking}\:\mathrm{the}\:\mathrm{same}\:\mathrm{3}\:\mathrm{children} \\ $$$$\mathrm{together}\:\mathrm{more}\:\mathrm{than}\:\mathrm{once}.\:\mathrm{The}\:\mathrm{number} \\ $$$$\mathrm{of}\:\mathrm{times}\:\mathrm{he}\:\mathrm{will}\:\mathrm{go}\:\mathrm{to}\:\mathrm{the}\:\mathrm{garden}\:\mathrm{is} \\ $$

Question Number 63485    Answers: 1   Comments: 0

f(x−3)+f(x)=2x−3 F(2)=0. F(−2)=?

$$\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}−\mathrm{3}\right)+\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}\right)=\mathrm{2}\boldsymbol{\mathrm{x}}−\mathrm{3} \\ $$$$\boldsymbol{\mathrm{F}}\left(\mathrm{2}\right)=\mathrm{0}. \\ $$$$\boldsymbol{\mathrm{F}}\left(−\mathrm{2}\right)=? \\ $$

Question Number 63499    Answers: 1   Comments: 0

given that a∣b, show that −a∣b.

$${given}\:{that}\:\:\:{a}\mid{b},\:{show}\:{that}\:−{a}\mid{b}. \\ $$

Question Number 63481    Answers: 1   Comments: 1

Find the solution of inequality : x^2 + ∣x∣ > 6

$${Find}\:\:{the}\:\:{solution}\:\:{of}\:\:{inequality}\:\:: \\ $$$$\:\:\:\:\:\:\:{x}^{\mathrm{2}} \:+\:\mid{x}\mid\:>\:\mathrm{6} \\ $$

Question Number 63474    Answers: 1   Comments: 0

let P(x)=x^2 +(1/2)x+b and Q(x)=x^2 +cx+d be to polynomials with real coefficient such that P(x) Q(x)=Q(P(x)) find all the real roots of P(Q(x))=0

$${let}\:{P}\left({x}\right)={x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{x}+{b} \\ $$$$ \\ $$$${and}\:{Q}\left({x}\right)={x}^{\mathrm{2}} +{cx}+{d} \\ $$$$ \\ $$$${be}\:{to}\:{polynomials}\:{with}\:{real}\:{coefficient}\:{such}\:{that} \\ $$$$ \\ $$$${P}\left({x}\right)\:{Q}\left({x}\right)={Q}\left({P}\left({x}\right)\right) \\ $$$$ \\ $$$${find}\:{all}\:{the}\:{real}\:{roots}\:{of}\:{P}\left({Q}\left({x}\right)\right)=\mathrm{0} \\ $$

Question Number 63470    Answers: 0   Comments: 0

Question Number 63466    Answers: 0   Comments: 7

If A=sin^(28) θ+cos^(36) θ then Ans: 0<A≤1

$$\mathrm{If}\:\mathrm{A}=\mathrm{sin}^{\mathrm{28}} \theta+\mathrm{cos}^{\mathrm{36}} \theta\:\mathrm{then} \\ $$$$\mathrm{Ans}:\:\mathrm{0}<\mathrm{A}\leqslant\mathrm{1} \\ $$

Question Number 63460    Answers: 1   Comments: 2

factorise cosθ−cos3θ−cos5θ +cos7θ

$${factorise} \\ $$$${cos}\theta−{cos}\mathrm{3}\theta−{cos}\mathrm{5}\theta\:+{cos}\mathrm{7}\theta \\ $$

Question Number 63473    Answers: 0   Comments: 5

question lim_(x→0) ((sin(x+A)−sin(A−x))/(2x))

$${question} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{sin}\left({x}+{A}\right)−{sin}\left({A}−{x}\right)}{\mathrm{2}{x}} \\ $$

  Pg 1380      Pg 1381      Pg 1382      Pg 1383      Pg 1384      Pg 1385      Pg 1386      Pg 1387      Pg 1388      Pg 1389   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com