Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1384

Question Number 74412    Answers: 0   Comments: 0

a,b,c are given real constants. p,q,r,t are unknowns from which we can choose values of two of them (non zero) and have to determine the other two (non zero), obeying two equations given below p^2 +q(1+bq)t^2 +q(ap+br)t +r(1+bq)t+r(ap+br) = 0 pt+q(a+cq)t^2 +r(a+cq)t +cqrt+cr^2 = 0 Can this be done solving a quadratic eq. and none higher..?

$${a},{b},{c}\:{are}\:{given}\:{real}\:{constants}. \\ $$$${p},{q},{r},{t}\:{are}\:{unknowns}\:{from}\:{which} \\ $$$${we}\:{can}\:{choose}\:{values}\:{of}\:{two}\:{of} \\ $$$${them}\:\left({non}\:{zero}\right)\:{and}\:{have}\:{to}\: \\ $$$${determine}\:{the}\:{other}\:{two}\:\left({non}\:{zero}\right), \\ $$$${obeying}\:\:{two}\:{equations}\:{given}\:{below} \\ $$$$\:{p}^{\mathrm{2}} +{q}\left(\mathrm{1}+{bq}\right){t}^{\mathrm{2}} +{q}\left({ap}+{br}\right){t} \\ $$$$\:\:\:\:\:+{r}\left(\mathrm{1}+{bq}\right){t}+{r}\left({ap}+{br}\right)\:=\:\mathrm{0} \\ $$$${pt}+{q}\left({a}+{cq}\right){t}^{\mathrm{2}} +{r}\left({a}+{cq}\right){t} \\ $$$$\:\:\:\:+{cqrt}+{cr}^{\mathrm{2}} =\:\mathrm{0} \\ $$$${Can}\:{this}\:{be}\:{done}\:{solving}\:{a} \\ $$$${quadratic}\:{eq}.\:{and}\:{none}\:{higher}..? \\ $$

Question Number 74411    Answers: 1   Comments: 0

A rocket vertically from the surface of the earth with an initil velocity(v_o ) show that its velocity v at height h is given by v_o ^2 −v^2 =((2gh)/(1+(h/R))) where R is radius of earth and g is the acceleration due to gravity at the earth surface

$${A}\:{rocket}\:{vertically}\:{from} \\ $$$${the}\:{surface}\:{of}\:{the}\:{earth} \\ $$$${with}\:{an}\:{initil}\:{velocity}\left({v}_{{o}} \right) \\ $$$${show}\:{that}\:{its}\:{velocity}\:{v} \\ $$$${at}\:{height}\:{h}\:{is}\:{given}\:{by} \\ $$$${v}_{{o}} ^{\mathrm{2}} −{v}^{\mathrm{2}} =\frac{\mathrm{2}{gh}}{\mathrm{1}+\frac{{h}}{{R}}} \\ $$$${where}\:{R}\:{is}\:{radius}\:{of}\:{earth} \\ $$$${and}\:\:{g}\:{is}\:{the}\:{acceleration} \\ $$$${due}\:{to}\:{gravity}\:{at}\:{the}\:{earth} \\ $$$${surface} \\ $$

Question Number 75089    Answers: 0   Comments: 4

∫sin (x^3 +c) dx=? ∫sinh (x^3 +c) dx=?

$$\int\mathrm{sin}\:\left({x}^{\mathrm{3}} +{c}\right)\:{dx}=? \\ $$$$\int\mathrm{sinh}\:\left({x}^{\mathrm{3}} +{c}\right)\:{dx}=? \\ $$

Question Number 74509    Answers: 0   Comments: 4

Question Number 74386    Answers: 0   Comments: 0

z(x)=u(x)+v(x)=Z(K)=U(K)+V(K) f u(x)=Σ(1/(k!)) (d^ k/(dx^ k))(x−xo)

$$\mathrm{z}\left(\mathrm{x}\right)=\mathrm{u}\left(\mathrm{x}\right)+\mathrm{v}\left(\mathrm{x}\right)=\mathrm{Z}\left(\mathrm{K}\right)=\mathrm{U}\left(\mathrm{K}\right)+\mathrm{V}\left(\mathrm{K}\right) \\ $$$$\mathrm{f}\:\mathrm{u}\left(\mathrm{x}\right)=\Sigma\frac{\mathrm{1}}{\mathrm{k}!}\:\frac{\hat {\mathrm{d}k}}{\mathrm{d}\hat {\mathrm{x}k}}\left(\mathrm{x}−\mathrm{x}{o}\right) \\ $$

Question Number 74384    Answers: 1   Comments: 1

Question Number 74383    Answers: 0   Comments: 3

Question Number 74369    Answers: 0   Comments: 0

please state Cramer′s rule

$${please}\:{state}\:{Cramer}'{s}\:{rule} \\ $$

Question Number 74394    Answers: 1   Comments: 4

Question Number 74367    Answers: 0   Comments: 2

Solve : (D^4 +4)y=0 given: y(0)=0 , y′(0)=2 , y′′(0)=0 and y′′′(0)=4.

$${Solve}\:: \\ $$$$\left({D}^{\mathrm{4}} +\mathrm{4}\right){y}=\mathrm{0}\: \\ $$$${given}:\:{y}\left(\mathrm{0}\right)=\mathrm{0}\:,\:{y}'\left(\mathrm{0}\right)=\mathrm{2}\:,\:{y}''\left(\mathrm{0}\right)=\mathrm{0}\:{and} \\ $$$${y}'''\left(\mathrm{0}\right)=\mathrm{4}. \\ $$

Question Number 74355    Answers: 1   Comments: 0

let f(x), g(x) and h(x) be functions R→R, given by f(x)=x^2 , if x≥0 and x+1 if x<0 g(x)=x^2 −4, if x≥2 and (1/(2−x)) if x<2 h(x)=3^(−x) , if x≤0 and 3^x if x≥0 Calculate ((f(2)+f(g(2)))/(f(g(h(−1))))).

$${let}\:{f}\left({x}\right),\:{g}\left({x}\right)\:{and}\:{h}\left({x}\right)\:{be}\:{functions} \\ $$$$\mathbb{R}\rightarrow\mathbb{R},\:{given}\:{by} \\ $$$${f}\left({x}\right)={x}^{\mathrm{2}} ,\:{if}\:{x}\geqslant\mathrm{0}\:{and}\:{x}+\mathrm{1}\:{if}\:{x}<\mathrm{0} \\ $$$${g}\left({x}\right)={x}^{\mathrm{2}} −\mathrm{4},\:{if}\:{x}\geqslant\mathrm{2}\:{and}\:\frac{\mathrm{1}}{\mathrm{2}−{x}}\:{if}\:{x}<\mathrm{2} \\ $$$${h}\left({x}\right)=\mathrm{3}^{−{x}} ,\:{if}\:{x}\leqslant\mathrm{0}\:{and}\:\mathrm{3}^{{x}} \:{if}\:{x}\geqslant\mathrm{0} \\ $$$${Calculate}\:\frac{{f}\left(\mathrm{2}\right)+{f}\left({g}\left(\mathrm{2}\right)\right)}{{f}\left({g}\left({h}\left(−\mathrm{1}\right)\right)\right)}. \\ $$

Question Number 74395    Answers: 0   Comments: 2

calculate ∫_0 ^∞ e^(−2x) [e^x ]dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:{e}^{−\mathrm{2}{x}} \left[{e}^{{x}} \right]{dx} \\ $$

Question Number 74353    Answers: 0   Comments: 0

let A_n =Σ_(k=0) ^n (1/(k+(√(k^2 +1)))) 1)find lim_(n→+∞) A_n 2) determine a equivalent of A_n when n→+∞

$${let}\:\:{A}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}} \:\:\frac{\mathrm{1}}{{k}+\sqrt{{k}^{\mathrm{2}} +\mathrm{1}}} \\ $$$$\left.\mathrm{1}\right){find}\:{lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{determine}\:{a}\:{equivalent}\:{of}\:{A}_{{n}} \:\:{when}\:{n}\rightarrow+\infty \\ $$$$ \\ $$

Question Number 74352    Answers: 1   Comments: 0

let U_n =Σ_(k=0) ^n (1/(k^2 +k+1)) find a equivalent of U_n (n→+∞)

$${let}\:{U}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}} \:\:\:\frac{\mathrm{1}}{{k}^{\mathrm{2}} +{k}+\mathrm{1}}\:\:{find}\:{a}\:{equivalent}\:{of}\:{U}_{{n}} \:\:\:\left({n}\rightarrow+\infty\right) \\ $$$$ \\ $$

Question Number 74351    Answers: 0   Comments: 1

find the value of Σ_(n=1) ^(+∞) (((−1)^n )/((4n^2 −1)^2 ))

$${find}\:{the}\:{value}\:{of}\:\:\sum_{{n}=\mathrm{1}} ^{+\infty} \:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{4}{n}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} } \\ $$

Question Number 74350    Answers: 0   Comments: 1

findf(a)= ∫_(−∞) ^(+∞) ((arctan(cosx))/(x^2 +a^2 ))dx witha>0

$${findf}\left({a}\right)=\:\int_{−\infty} ^{+\infty} \:\frac{{arctan}\left({cosx}\right)}{{x}^{\mathrm{2}} +{a}^{\mathrm{2}} }{dx}\:{witha}>\mathrm{0} \\ $$

Question Number 74349    Answers: 0   Comments: 2

calculate ∫_0 ^∞ ((cos(2πx))/((x^2 +3)^2 ))dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{cos}\left(\mathrm{2}\pi{x}\right)}{\left({x}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{2}} }{dx} \\ $$

Question Number 74348    Answers: 0   Comments: 1

calculate ∫_0 ^∞ ((arctan(sin(x^2 )))/(x^2 +1))dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{arctan}\left({sin}\left({x}^{\mathrm{2}} \right)\right)}{{x}^{\mathrm{2}} +\mathrm{1}}{dx} \\ $$

Question Number 74347    Answers: 0   Comments: 0

calculate ∫_0 ^∞ ((arctan(cos(πx^2 )))/(x^2 +1))dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{arctan}\left({cos}\left(\pi{x}^{\mathrm{2}} \right)\right)}{{x}^{\mathrm{2}} +\mathrm{1}}{dx} \\ $$

Question Number 74346    Answers: 1   Comments: 0

find ∫ ((x+(√(x+1)))/(2(√(x−1))+3))dx

$${find}\:\int\:\:\frac{{x}+\sqrt{{x}+\mathrm{1}}}{\mathrm{2}\sqrt{{x}−\mathrm{1}}+\mathrm{3}}{dx} \\ $$

Question Number 74345    Answers: 0   Comments: 2

1) calculate f(x)=∫_(x+1) ^(x^2 +1) e^(−xt) arctan(t)dt 2) find lim_(x→0) f(x)

$$\left.\mathrm{1}\right)\:{calculate}\:{f}\left({x}\right)=\int_{{x}+\mathrm{1}} ^{{x}^{\mathrm{2}} +\mathrm{1}} \:\:\:{e}^{−{xt}} {arctan}\left({t}\right){dt} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:{f}\left({x}\right) \\ $$

Question Number 74344    Answers: 1   Comments: 1

calculate ∫ ((x^2 −x+3)/(x^3 (x+2)^2 ))dx

$${calculate}\:\int\:\:\:\:\:\frac{{x}^{\mathrm{2}} −{x}+\mathrm{3}}{{x}^{\mathrm{3}} \left({x}+\mathrm{2}\right)^{\mathrm{2}} }{dx} \\ $$

Question Number 74343    Answers: 0   Comments: 1

calculatef(α)= ∫_0 ^∞ ((arctan(αx^2 ))/(x^2 +9))dx with α real.

$${calculatef}\left(\alpha\right)=\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{arctan}\left(\alpha{x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} \:+\mathrm{9}}{dx}\:\:\:{with}\:\alpha\:{real}. \\ $$

Question Number 74342    Answers: 1   Comments: 2

1) calculate U_n =∫_0 ^∞ e^(−nx) [x]dx 2) find lim_(n→+∞) n U_n 3) determine nsture of the serie Σ U_n

$$\left.\mathrm{1}\right)\:{calculate}\:\:{U}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{nx}} \left[{x}\right]{dx} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\:{lim}_{{n}\rightarrow+\infty} \:\:{n}\:{U}_{{n}} \\ $$$$\left.\mathrm{3}\right)\:{determine}\:{nsture}\:{of}\:{the}\:{serie}\:\Sigma\:{U}_{{n}} \\ $$

Question Number 74335    Answers: 1   Comments: 0

5(1/2)×(6/7)=? The end result must in the mixed fraction.

$$\mathrm{5}\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{6}}{\mathrm{7}}=?\: \\ $$$${The}\:{end}\:{result}\:{must}\:{in}\:{the} \\ $$$$\boldsymbol{{mixed}}\:\boldsymbol{{fraction}}. \\ $$

Question Number 74334    Answers: 0   Comments: 1

∫te^t cos e^t .e^t dt

$$\int{te}^{{t}} \mathrm{cos}\:{e}^{{t}} .{e}^{{t}} {dt} \\ $$

  Pg 1379      Pg 1380      Pg 1381      Pg 1382      Pg 1383      Pg 1384      Pg 1385      Pg 1386      Pg 1387      Pg 1388   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com