Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1384

Question Number 72888    Answers: 1   Comments: 5

let f(x)=∫_(π/6) ^(π/4) ((tant)/(2+x cost))dt with x real 1)determine a explicit form for f(x) 2)determine also g(x)=∫_(π/6) ^(π/4) ((tant)/((2+xcost)^2 ))dx 3) find the value of ∫_(π/6) ^(π/4) ((tant)/((2+3cost)))dt and ∫_(π/6) ^(π/4) ((tant)/((2+3cost)^2 ))dt

$${let}\:{f}\left({x}\right)=\int_{\frac{\pi}{\mathrm{6}}} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{{tant}}{\mathrm{2}+{x}\:{cost}}{dt}\:\:{with}\:{x}\:{real} \\ $$$$\left.\mathrm{1}\right){determine}\:{a}\:{explicit}\:{form}\:{for}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){determine}\:{also}\:{g}\left({x}\right)=\int_{\frac{\pi}{\mathrm{6}}} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{{tant}}{\left(\mathrm{2}+{xcost}\right)^{\mathrm{2}} }{dx} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\frac{\pi}{\mathrm{6}}} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{{tant}}{\left(\mathrm{2}+\mathrm{3}{cost}\right)}{dt}\:{and}\:\int_{\frac{\pi}{\mathrm{6}}} ^{\frac{\pi}{\mathrm{4}}} \:\frac{{tant}}{\left(\mathrm{2}+\mathrm{3}{cost}\right)^{\mathrm{2}} }{dt} \\ $$

Question Number 72886    Answers: 1   Comments: 0

let w=f(x, y) be a differentiable function where x=rcosθ and y=rsinθ show that (f_x )^2 +(f_y )^2 =(w_x )^2 +1/r^2 (w_y )^2 ? help me sir

$${let}\:{w}={f}\left({x},\:{y}\right)\:{be}\:{a}\:{differentiable}\:{function}\:{where}\:{x}={rcos}\theta\:{and}\:{y}={rsin}\theta\:{show}\:{that}\:\left({f}_{{x}} \right)^{\mathrm{2}} +\left({f}_{{y}} \right)^{\mathrm{2}} =\left({w}_{{x}} \right)^{\mathrm{2}} +\mathrm{1}/{r}^{\mathrm{2}} \left({w}_{{y}} \right)^{\mathrm{2}} ? \\ $$$${help}\:{me}\:{sir}\: \\ $$

Question Number 72884    Answers: 0   Comments: 1

find the area of the region bounded by the semicircle y=(√(a^2 −x^2 )) and the x=+−a and the line y=−a ? by using intigiral pleas sir help me

$${find}\:{the}\:{area}\:{of}\:{the}\:{region}\:{bounded}\:{by}\:{the}\:{semicircle}\:{y}=\sqrt{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} }\:{and}\:{the}\:{x}=+−{a}\:\:{and}\:{the}\:{line}\:{y}=−{a}\:?\:{by}\:{using}\:{intigiral} \\ $$$${pleas}\:{sir}\:{help}\:{me} \\ $$

Question Number 72883    Answers: 1   Comments: 0

if w=f(u and v) where f_(uu) +f_(vv) =0 and u=(x^2 −y^2 )/2 and v=xy show that w_(xx) +w_(yy) =0 ? pleas sir help me

$${if}\:{w}={f}\left({u}\:{and}\:{v}\right)\:{where}\:{f}_{{uu}} +{f}_{{vv}} =\mathrm{0}\:{and}\:{u}=\left({x}^{\mathrm{2}} −{y}^{\mathrm{2}} \right)/\mathrm{2}\:{and}\:{v}={xy}\:{show}\:{that}\:{w}_{{xx}} +{w}_{{yy}} =\mathrm{0}\:? \\ $$$${pleas}\:{sir}\:{help}\:{me} \\ $$

Question Number 72889    Answers: 1   Comments: 1

calculate Σ_(n=1) ^∞ (((−1)^n )/((2n+1)n^2 ))

$${calculate}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right){n}^{\mathrm{2}} } \\ $$

Question Number 72880    Answers: 0   Comments: 0

Question Number 72877    Answers: 0   Comments: 1

by using theorem demwover find x^4 =1? pleas sir help me

$${by}\:{using}\:{theorem}\:{demwover}\:{find}\:\:{x}^{\mathrm{4}} =\mathrm{1}? \\ $$$${pleas}\:{sir}\:{help}\:{me} \\ $$

Question Number 72871    Answers: 1   Comments: 0

Question Number 72863    Answers: 0   Comments: 1

Question Number 72905    Answers: 2   Comments: 3

f(x)≥0, and lim_(x→a) f(x)=0,lim_(x→a) g(x)=∞ then lim_(x→a) f(x)^(g(x)) =?

$${f}\left({x}\right)\geqslant\mathrm{0},\:{and}\:\underset{{x}\rightarrow{a}} {\mathrm{lim}}{f}\left({x}\right)=\mathrm{0},\underset{{x}\rightarrow{a}} {\mathrm{lim}}{g}\left({x}\right)=\infty \\ $$$${then}\:\underset{{x}\rightarrow{a}} {\mathrm{lim}}{f}\left({x}\right)^{{g}\left({x}\right)} =? \\ $$

Question Number 72894    Answers: 1   Comments: 0

Question Number 72841    Answers: 1   Comments: 3

Could someone help me on this question? Knowing that the area of a circle segment is given by A=R^2 (θ−sinθ)/2. Where A=7m^2 ; R^2 =((28)/π). What is the best answer for the angle value (degree) a) 85°<θ<90° b) 95°<θ<100° c) 105°<θ<110° d) 115°<θ<120° e) 125°<θ<135°

$${Could}\:{someone}\:{help}\:{me}\:{on}\:{this}\:{question}? \\ $$$${Knowing}\:{that}\:{the}\:{area}\:{of}\:{a}\:{circle}\:{segment}\:{is}\:{given}\:{by}\:{A}={R}^{\mathrm{2}} \left(\theta−{sin}\theta\right)/\mathrm{2}.\:{Where}\:{A}=\mathrm{7}{m}^{\mathrm{2}} ;\:{R}^{\mathrm{2}} =\frac{\mathrm{28}}{\pi}. \\ $$$${What}\:{is}\:{the}\:{best}\:{answer}\:{for}\:{the}\:{angle}\:{value}\:\left({degree}\right) \\ $$$$\left.{a}\right)\:\mathrm{85}°<\theta<\mathrm{90}° \\ $$$$\left.{b}\right)\:\mathrm{95}°<\theta<\mathrm{100}° \\ $$$$\left.{c}\right)\:\mathrm{105}°<\theta<\mathrm{110}° \\ $$$$\left.{d}\right)\:\mathrm{115}°<\theta<\mathrm{120}° \\ $$$$\left.{e}\right)\:\mathrm{125}°<\theta<\mathrm{135}° \\ $$

Question Number 72838    Answers: 0   Comments: 1

given that f(x) = ((∣x −2∣)/(1−∣x∣)) check if f is continuous a x = 2 hence write f(x) as a pairwise function

$${given}\:{that}\:\:\:{f}\left({x}\right)\:=\:\frac{\mid{x}\:−\mathrm{2}\mid}{\mathrm{1}−\mid{x}\mid} \\ $$$${check}\:{if}\:{f}\:{is}\:{continuous}\:{a}\:{x}\:=\:\mathrm{2} \\ $$$${hence}\:\:{write}\:{f}\left({x}\right)\:{as}\:{a}\:{pairwise}\:{function}\: \\ $$

Question Number 72837    Answers: 0   Comments: 1

find lim_(x→0) x + [x]

$${find}\: \\ $$$$\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:{x}\:+\:\left[{x}\right] \\ $$

Question Number 72836    Answers: 1   Comments: 1

Question Number 72835    Answers: 1   Comments: 0

In an arithmetic progression the ninth term is greater than the second term and the sum of the first term with the fifth term is 20. What is the fifth term?

$${In}\:{an}\:{arithmetic}\:{progression}\:{the} \\ $$$${ninth}\:{term}\:{is}\:{greater}\:{than}\:{the}\:{second} \\ $$$${term}\:{and}\:{the}\:{sum}\:{of}\:{the}\:{first}\:{term} \\ $$$${with}\:{the}\:{fifth}\:{term}\:{is}\:\mathrm{20}.\:{What}\:{is} \\ $$$${the}\:{fifth}\:{term}? \\ $$

Question Number 72832    Answers: 1   Comments: 1

In a parallelogram OABC, OA^⇁ =a^(−⇁) , OC^→ =c^→ , D is a point such that AD^→ :DB^→ =1:2 Express the following in terms of a and c (i)CB^→ (ii)BC^→ (iii)AB^→ (iv) AD^→ (v)OD^→ (vi)DC^→

$${In}\:{a}\:{parallelogram}\:{OABC},\:{O}\overset{\rightharpoondown} {{A}}=\overset{−\rightharpoondown} {{a}}, \\ $$$${O}\overset{\rightarrow} {{C}}=\overset{\rightarrow} {{c}},\:{D}\:{is}\:{a}\:{point}\:{such}\:{that}\:{A}\overset{\rightarrow} {{D}}:{D}\overset{\rightarrow} {{B}}=\mathrm{1}:\mathrm{2} \\ $$$${Express}\:{the}\:{following}\:{in}\:{terms}\:{of}\:{a}\:{and}\:{c} \\ $$$$\left({i}\right){C}\overset{\rightarrow} {{B}}\:\left({ii}\right){B}\overset{\rightarrow} {{C}}\:\left({iii}\right){A}\overset{\rightarrow} {{B}}\:\left({iv}\right)\:{A}\overset{\rightarrow} {{D}}\:\left({v}\right){O}\overset{\rightarrow} {{D}} \\ $$$$\left({vi}\right){D}\overset{\rightarrow} {{C}} \\ $$

Question Number 72824    Answers: 1   Comments: 0

fnd all integers n for which 13∣ 4(n^2 + 1)

$${fnd}\:{all}\:{integers}\:{n}\:{for}\:{which}\: \\ $$$$\:\mathrm{13}\mid\:\mathrm{4}\left({n}^{\mathrm{2}} \:+\:\mathrm{1}\right) \\ $$

Question Number 72823    Answers: 1   Comments: 0

What is derivative for this function a×b^(x−1) ×c^((1/2)(x−1)(x−2)) ×d^((1/6)(x−1)(x−2)(x−3))

$$\mathrm{What}\:\mathrm{is}\:\mathrm{derivative}\:\mathrm{for}\:\mathrm{this}\:\mathrm{function} \\ $$$$\: \\ $$$${a}×{b}^{{x}−\mathrm{1}} ×{c}^{\frac{\mathrm{1}}{\mathrm{2}}\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)} ×{d}^{\frac{\mathrm{1}}{\mathrm{6}}\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)\left({x}−\mathrm{3}\right)} \\ $$

Question Number 72934    Answers: 1   Comments: 0

Question Number 72813    Answers: 0   Comments: 3

Find the area of the region enclosed by the line 5y=x+6 and the curve y=(√(∣x∣)) .

$${Find}\:{the}\:{area}\:{of}\:{the}\:{region}\:{enclosed} \\ $$$${by}\:{the}\:{line}\:\mathrm{5}{y}={x}+\mathrm{6}\:{and}\:{the}\:{curve} \\ $$$${y}=\sqrt{\mid{x}\mid}\:. \\ $$

Question Number 72806    Answers: 1   Comments: 2

show that lim_( x→0) [ x] does not exist. Hence define [x] and sketch a graph for y = 3x^2 + [x]

$$\underset{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}\rightarrow\mathrm{0}} {\:{show}\:{that}\:\:\mathrm{lim}}\:\left[\:{x}\right]\:\:{does}\:{not}\:{exist}. \\ $$$${Hence}\:{define}\:\:\left[{x}\right]\:\:{and}\:{sketch}\:{a}\:{graph}\:{for}\: \\ $$$$\:{y}\:=\:\mathrm{3}{x}^{\mathrm{2}} \:+\:\left[{x}\right] \\ $$

Question Number 72805    Answers: 0   Comments: 0

PARTIAL VARIATION The success rate of government variws inversly as the number of corrupt mi nded individual and varies directly as the number of clean minded individal .if the goverment attain 95% success rate when there are two corrupt minded and 75% success rate when there are 5 corrupt minded and 20 clean minded individual. How many corrupr minded individual must be in administration with one clean minded individual to attain 99% success rate?

$${PARTIAL}\:{VARIATION} \\ $$$${The}\:{success}\:{rate}\:{of}\:{government}\:{variws}\: \\ $$$${inversly}\:{as}\:{the}\:{number}\:{of}\:{corrupt}\:{mi} \\ $$$${nded}\:{individual}\:{and}\:{varies}\:{directly} \\ $$$${as}\:{the}\:{number}\:{of}\:{clean}\:{minded}\:{individal} \\ $$$$.{if}\:\:{the}\:{goverment}\:{attain}\:\mathrm{95\%}\:{success} \\ $$$${rate}\:{when}\:{there}\:{are}\:{two}\:{corrupt}\:{minded} \\ $$$${and}\:\mathrm{75\%}\:{success}\:{rate}\:{when}\:{there}\:{are} \\ $$$$\mathrm{5}\:{corrupt}\:{minded}\:{and}\:\mathrm{20}\:{clean}\:{minded} \\ $$$${individual}.\:{How}\:{many}\:{corrupr}\:{minded} \\ $$$${individual}\:{must}\:{be}\:{in}\:{administration}\: \\ $$$${with}\:{one}\:{clean}\:{minded}\:{individual}\:{to}\: \\ $$$${attain}\:\mathrm{99\%}\:{success}\:{rate}? \\ $$

Question Number 72803    Answers: 2   Comments: 1

Question Number 72796    Answers: 1   Comments: 0

Integrate f(x,y)=(1/((1+x^2 +y^2 )^2 )) over the triangle with vertices (0,0) ,(1,0), (1,(√3)) after changing it to polar form.

$${Integrate}\:{f}\left({x},{y}\right)=\frac{\mathrm{1}}{\left(\mathrm{1}+{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{over} \\ $$$${the}\:{triangle}\:{with}\:{vertices}\:\left(\mathrm{0},\mathrm{0}\right)\:,\left(\mathrm{1},\mathrm{0}\right), \\ $$$$\left(\mathrm{1},\sqrt{\mathrm{3}}\right)\:{after}\:{changing}\:{it}\:{to}\:{polar}\:{form}. \\ $$

Question Number 72789    Answers: 1   Comments: 4

Find the area of the surface generated by revolving the curve x=(y^4 /4)+(1/(8y^2 )) about the x−axis . (given:1≤y≤2)

$${Find}\:{the}\:{area}\:{of}\:{the}\:{surface}\:{generated} \\ $$$${by}\:{revolving}\:{the}\:{curve}\:{x}=\frac{{y}^{\mathrm{4}} }{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{8}{y}^{\mathrm{2}} }\: \\ $$$${about}\:{the}\:{x}−{axis}\:.\:\left({given}:\mathrm{1}\leqslant{y}\leqslant\mathrm{2}\right) \\ $$

  Pg 1379      Pg 1380      Pg 1381      Pg 1382      Pg 1383      Pg 1384      Pg 1385      Pg 1386      Pg 1387      Pg 1388   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com