Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1383

Question Number 74688    Answers: 0   Comments: 0

y = f(x) Can we tranform this into a real life problem and solve with several condition.

$$\mathrm{y}\:\:=\:\:\mathrm{f}\left(\mathrm{x}\right) \\ $$$$\mathrm{Can}\:\mathrm{we}\:\mathrm{tranform}\:\mathrm{this}\:\mathrm{into}\:\mathrm{a}\:\mathrm{real}\:\mathrm{life}\:\mathrm{problem}\:\mathrm{and}\:\mathrm{solve}\:\mathrm{with} \\ $$$$\mathrm{several}\:\mathrm{condition}. \\ $$

Question Number 74675    Answers: 0   Comments: 0

Question Number 74697    Answers: 1   Comments: 0

Question Number 74655    Answers: 1   Comments: 1

.

$$. \\ $$

Question Number 74663    Answers: 1   Comments: 0

If x^x y^y z^z = c show that at x = y = z (∂^2 z/(∂x∂y)) = − (x log ex)^(−1)

$$\mathrm{If}\:\:\:\:\mathrm{x}^{\mathrm{x}} \:\mathrm{y}^{\mathrm{y}} \:\mathrm{z}^{\mathrm{z}} \:\:\:=\:\:\:\mathrm{c}\:\:\:\:\:\:\:\mathrm{show}\:\mathrm{that}\:\mathrm{at}\:\:\:\:\:\mathrm{x}\:\:=\:\:\mathrm{y}\:\:=\:\:\mathrm{z} \\ $$$$\:\:\:\:\:\:\frac{\partial^{\mathrm{2}} \mathrm{z}}{\partial\mathrm{x}\partial\mathrm{y}}\:\:\:=\:\:\:−\:\left(\mathrm{x}\:\mathrm{log}\:\mathrm{ex}\right)^{−\mathrm{1}} \\ $$

Question Number 74649    Answers: 2   Comments: 1

Question Number 74647    Answers: 0   Comments: 2

Question Number 74639    Answers: 0   Comments: 4

If

$${If} \\ $$

Question Number 74634    Answers: 0   Comments: 6

Question Number 74632    Answers: 0   Comments: 1

.

$$. \\ $$

Question Number 74623    Answers: 1   Comments: 1

Question Number 74622    Answers: 0   Comments: 4

Expand 1+(2/3)∙(Σ_(k=1) ^(n−1) [cos(((2π)/3)x)]+2n−2)

$$\mathrm{Expand} \\ $$$$\mathrm{1}+\frac{\mathrm{2}}{\mathrm{3}}\centerdot\left(\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\sum}}\left[{cos}\left(\frac{\mathrm{2}\pi}{\mathrm{3}}{x}\right)\right]+\mathrm{2}{n}−\mathrm{2}\right) \\ $$

Question Number 74621    Answers: 1   Comments: 1

Question Number 74620    Answers: 1   Comments: 0

Question Number 74594    Answers: 1   Comments: 1

Question Number 74591    Answers: 0   Comments: 0

Question Number 74590    Answers: 1   Comments: 0

Question Number 74589    Answers: 1   Comments: 0

Question Number 74582    Answers: 1   Comments: 0

Find all values of x: (2^x )^(x^2 −8) =32

$${Find}\:{all}\:{values}\:{of}\:{x}: \\ $$$$\left(\mathrm{2}^{{x}} \right)^{{x}^{\mathrm{2}} −\mathrm{8}} =\mathrm{32} \\ $$

Question Number 74580    Answers: 1   Comments: 0

Question Number 74579    Answers: 0   Comments: 0

find the gradient of scalar point function being expressed in term of scalar triple product as u=(a^ ,b^ ,c^ )=a^ .b^ ×c^

$${find}\:{the}\:{gradient}\:{of}\:{scalar}\:{point}\:{function}\:{being}\:{expressed}\:{in}\:{term}\:{of}\:{scalar}\:{triple}\:{product}\:{as}\:{u}=\left(\bar {{a}},\bar {{b}},\bar {{c}}\right)=\bar {{a}}.\bar {{b}}×\bar {{c}} \\ $$

Question Number 74573    Answers: 1   Comments: 1

Find (turn it into non-segma expression) 1+Σ_(k=1) ^(n−1) (((−1)^k +3)/2)

$$\mathrm{Find}\:\left(\mathrm{turn}\:\mathrm{it}\:\mathrm{into}\:\mathrm{non}-\mathrm{segma}\:\mathrm{expression}\right) \\ $$$$\mathrm{1}+\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\sum}}\frac{\left(−\mathrm{1}\right)^{{k}} +\mathrm{3}}{\mathrm{2}} \\ $$

Question Number 74604    Answers: 0   Comments: 3

.

$$. \\ $$

Question Number 74601    Answers: 0   Comments: 0

solve y′′+ a(x)y=b(x) the general form of the solution if possible or juzt a solving metbod

$${solve}\:\:\:{y}''+\:{a}\left({x}\right){y}={b}\left({x}\right)\: \\ $$$${the}\:\:{general}\:\:{form}\:{of}\:\:{the}\:{solution}\:{if}\:\:{possible} \\ $$$${or}\:\:{juzt}\:{a}\:{solving}\:{metbod} \\ $$

Question Number 74600    Answers: 1   Comments: 0

Question Number 74599    Answers: 0   Comments: 0

Hello,verry Nice day let U_n =E((((3+(√(17)))/2))^n ),n∈N^∗ show that U_n ≡n(2)

$$\mathrm{Hello},\mathrm{verry}\:\mathrm{Nice}\:\mathrm{day}\: \\ $$$$\mathrm{let}\:\mathrm{U}_{\mathrm{n}} =\mathrm{E}\left(\left(\frac{\mathrm{3}+\sqrt{\mathrm{17}}}{\mathrm{2}}\right)^{\mathrm{n}} \right),\mathrm{n}\in\mathbb{N}^{\ast} \\ $$$$\mathrm{show}\:\mathrm{that}\:\mathrm{U}_{\mathrm{n}} \equiv\mathrm{n}\left(\mathrm{2}\right) \\ $$

  Pg 1378      Pg 1379      Pg 1380      Pg 1381      Pg 1382      Pg 1383      Pg 1384      Pg 1385      Pg 1386      Pg 1387   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com