Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1383

Question Number 74338    Answers: 0   Comments: 0

∫e^(2t) sin e^t dt

$$\int{e}^{\mathrm{2}{t}} \mathrm{sin}\:{e}^{{t}} {dt} \\ $$

Question Number 74337    Answers: 1   Comments: 0

find the contracted form of: ((n),(p) )+2 ((( n)),((p+1)) )+ ((( n)),((p+2)) )

$${find}\:{the}\:{contracted}\:{form}\:{of}: \\ $$$$\begin{pmatrix}{{n}}\\{{p}}\end{pmatrix}+\mathrm{2}\begin{pmatrix}{\:\:\:{n}}\\{{p}+\mathrm{1}}\end{pmatrix}+\begin{pmatrix}{\:\:\:{n}}\\{{p}+\mathrm{2}}\end{pmatrix} \\ $$

Question Number 73805    Answers: 0   Comments: 3

topic binomial theorem Evaluate (2x−6y)^(−8)

$${topic}\:{binomial}\:{theorem} \\ $$$${Evaluate} \\ $$$$\left(\mathrm{2}{x}−\mathrm{6}{y}\right)^{−\mathrm{8}} \\ $$

Question Number 73804    Answers: 0   Comments: 0

Question Number 73800    Answers: 0   Comments: 8

Please draw the shape and find the angles QR = 6 cm RS = 7 cm PS = 4 cm

$$\mathrm{Please}\:\mathrm{draw}\:\mathrm{the}\:\mathrm{shape}\:\mathrm{and}\:\mathrm{find}\:\mathrm{the}\:\mathrm{angles} \\ $$$$\mathrm{QR}\:\:\:=\:\:\mathrm{6}\:\:\mathrm{cm} \\ $$$$\mathrm{RS}\:\:\:=\:\:\mathrm{7}\:\mathrm{cm} \\ $$$$\mathrm{PS}\:\:=\:\:\mathrm{4}\:\mathrm{cm} \\ $$

Question Number 73789    Answers: 3   Comments: 4

Question Number 73787    Answers: 0   Comments: 2

sin 50 + sin 40= ? without tables or calculators

$${sin}\:\mathrm{50}\:+\:{sin}\:\mathrm{40}=\:?\:{without}\:{tables}\:{or}\:{calculators} \\ $$

Question Number 73782    Answers: 1   Comments: 2

Question Number 73775    Answers: 0   Comments: 0

Question Number 73774    Answers: 0   Comments: 0

hello ,show that Σ_(n≥1) (((−1)^n nsin(n))/(1+n^2 ))=((πe^1 −πe^(−1) )/(−2e^π +2e^(−π) )) indication ,Residus Theorem let f(z)=((zsin(z))/((1+z^2 )sin(πz))) have a very nice day!

$$\mathrm{hello}\:,\mathrm{show}\:\mathrm{that} \\ $$$$\underset{\mathrm{n}\geqslant\mathrm{1}} {\sum}\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} \mathrm{nsin}\left(\mathrm{n}\right)}{\mathrm{1}+\mathrm{n}^{\mathrm{2}} }=\frac{\pi\mathrm{e}^{\mathrm{1}} −\pi\mathrm{e}^{−\mathrm{1}} }{−\mathrm{2e}^{\pi} +\mathrm{2e}^{−\pi} } \\ $$$$\mathrm{indication}\:,\mathrm{Residus}\:\mathrm{Theorem}\:\mathrm{let} \\ $$$$\mathrm{f}\left(\mathrm{z}\right)=\frac{\mathrm{zsin}\left(\mathrm{z}\right)}{\left(\mathrm{1}+\mathrm{z}^{\mathrm{2}} \right)\mathrm{sin}\left(\pi\mathrm{z}\right)} \\ $$$$\mathrm{have}\:\mathrm{a}\:\mathrm{very}\:\mathrm{nice}\:\mathrm{day}! \\ $$

Question Number 73766    Answers: 3   Comments: 0

{ (((1/(x−1))=(2/(y−2))=(3/(z−3)))),((x+2y+3z=56)) :} please help me to solve it in R^3

$$\begin{cases}{\frac{\mathrm{1}}{\mathrm{x}−\mathrm{1}}=\frac{\mathrm{2}}{\mathrm{y}−\mathrm{2}}=\frac{\mathrm{3}}{\mathrm{z}−\mathrm{3}}}\\{\mathrm{x}+\mathrm{2y}+\mathrm{3z}=\mathrm{56}}\end{cases} \\ $$$$ \\ $$$$\mathrm{please}\:\mathrm{help}\:\mathrm{me}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{it}\:\mathrm{in}\:\mathbb{R}^{\mathrm{3}} \\ $$

Question Number 73757    Answers: 1   Comments: 1

cos 70°+sin 200°=?

$$\mathrm{cos}\:\mathrm{70}°+\mathrm{sin}\:\mathrm{200}°=? \\ $$

Question Number 73755    Answers: 1   Comments: 0

show that for all integer n , n+1 divides (((2n)),(n) )

$${show}\:{that}\:\:\:{for}\:{all}\:{integer}\:\:{n}\:,\:\:{n}+\mathrm{1}\:{divides}\:\begin{pmatrix}{\mathrm{2}{n}}\\{{n}}\end{pmatrix} \\ $$

Question Number 73751    Answers: 1   Comments: 1

Find out the value of J=∫_0 ^∞ ∫_0 ^1 (2e^(−2xy) −e^(−xy) )dxdy

$${Find}\:\:{out}\:{the}\:{value}\:{of}\:\:\: \\ $$$$\:\:{J}=\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{2}{e}^{−\mathrm{2}{xy}} −{e}^{−{xy}} \right){dxdy}\: \\ $$

Question Number 73746    Answers: 1   Comments: 1

total numper of words formed by 2 vowels and 3 consonants take from vowels and 5 consonants is equal to ? pleas sir help me ?

$${total}\:{numper}\:{of}\:{words}\:{formed}\:{by}\:\mathrm{2}\:{vowels}\:{and}\:\mathrm{3}\:{consonants}\:{take}\:{from}\:{vowels}\:{and}\:\mathrm{5}\:{consonants}\:{is}\:{equal}\:{to}\:? \\ $$$${pleas}\:{sir}\:{help}\:{me}\:? \\ $$

Question Number 73745    Answers: 0   Comments: 0

total numper of words formed by 2 vowels and 3 consonants take from vowels and 5 consonants is equal to ? pleas sir help me ?

$${total}\:{numper}\:{of}\:{words}\:{formed}\:{by}\:\mathrm{2}\:{vowels}\:{and}\:\mathrm{3}\:{consonants}\:{take}\:{from}\:{vowels}\:{and}\:\mathrm{5}\:{consonants}\:{is}\:{equal}\:{to}\:? \\ $$$${pleas}\:{sir}\:{help}\:{me}\:? \\ $$

Question Number 73744    Answers: 0   Comments: 0

total numper of words formed by 2 vowels and 3 consonants take from vowels and 5 consonants is equal to ? pleas sir help me ?

$${total}\:{numper}\:{of}\:{words}\:{formed}\:{by}\:\mathrm{2}\:{vowels}\:{and}\:\mathrm{3}\:{consonants}\:{take}\:{from}\:{vowels}\:{and}\:\mathrm{5}\:{consonants}\:{is}\:{equal}\:{to}\:? \\ $$$${pleas}\:{sir}\:{help}\:{me}\:? \\ $$

Question Number 73737    Answers: 2   Comments: 1

Question Number 73736    Answers: 1   Comments: 0

lim_(x→0) x^x

$$\underset{{x}\rightarrow\mathrm{0}} {{lim}x}^{{x}} \\ $$

Question Number 73730    Answers: 2   Comments: 0

Question Number 73725    Answers: 0   Comments: 0

Question Number 73724    Answers: 0   Comments: 0

find all simple graphical sequence for n=4

$${find}\:{all}\:{simple}\:{graphical}\:{sequence}\:{for}\:{n}=\mathrm{4} \\ $$

Question Number 73723    Answers: 0   Comments: 0

give two examples in support of understanding for enumerative combinatoris

$${give}\:{two}\:{examples}\:{in}\:{support}\:{of}\:{understanding}\:{for}\:{enumerative}\:{combinatoris} \\ $$

Question Number 73722    Answers: 0   Comments: 2

Question Number 73721    Answers: 0   Comments: 0

Question Number 73715    Answers: 1   Comments: 2

Evaluate the integral : ∫_( R) ∫(3x^2 +14xy+8y^2 )dxdy for the region R in the 1st quadrant bounded by the lines y=((−3)/2)x+1,y=((−3)/2)x+3,y=−(1/4)x and y=−(1/4)x+1 .

$${Evaluate}\:{the}\:{integral}\:: \\ $$$$\underset{\:\mathbb{R}} {\int}\int\left(\mathrm{3}{x}^{\mathrm{2}} +\mathrm{14}{xy}+\mathrm{8}{y}^{\mathrm{2}} \right){dxdy}\:{for}\:{the}\:{region} \\ $$$$\mathbb{R}\:\mathrm{in}\:{the}\:\mathrm{1}{st}\:{quadrant}\:{bounded}\:{by}\:{the} \\ $$$${lines}\:{y}=\frac{−\mathrm{3}}{\mathrm{2}}{x}+\mathrm{1},{y}=\frac{−\mathrm{3}}{\mathrm{2}}{x}+\mathrm{3},{y}=−\frac{\mathrm{1}}{\mathrm{4}}{x} \\ $$$${and}\:{y}=−\frac{\mathrm{1}}{\mathrm{4}}{x}+\mathrm{1}\:. \\ $$

  Pg 1378      Pg 1379      Pg 1380      Pg 1381      Pg 1382      Pg 1383      Pg 1384      Pg 1385      Pg 1386      Pg 1387   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com