Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1383
Question Number 74688 Answers: 0 Comments: 0
$$\mathrm{y}\:\:=\:\:\mathrm{f}\left(\mathrm{x}\right) \\ $$$$\mathrm{Can}\:\mathrm{we}\:\mathrm{tranform}\:\mathrm{this}\:\mathrm{into}\:\mathrm{a}\:\mathrm{real}\:\mathrm{life}\:\mathrm{problem}\:\mathrm{and}\:\mathrm{solve}\:\mathrm{with} \\ $$$$\mathrm{several}\:\mathrm{condition}. \\ $$
Question Number 74675 Answers: 0 Comments: 0
Question Number 74697 Answers: 1 Comments: 0
Question Number 74655 Answers: 1 Comments: 1
$$. \\ $$
Question Number 74663 Answers: 1 Comments: 0
$$\mathrm{If}\:\:\:\:\mathrm{x}^{\mathrm{x}} \:\mathrm{y}^{\mathrm{y}} \:\mathrm{z}^{\mathrm{z}} \:\:\:=\:\:\:\mathrm{c}\:\:\:\:\:\:\:\mathrm{show}\:\mathrm{that}\:\mathrm{at}\:\:\:\:\:\mathrm{x}\:\:=\:\:\mathrm{y}\:\:=\:\:\mathrm{z} \\ $$$$\:\:\:\:\:\:\frac{\partial^{\mathrm{2}} \mathrm{z}}{\partial\mathrm{x}\partial\mathrm{y}}\:\:\:=\:\:\:−\:\left(\mathrm{x}\:\mathrm{log}\:\mathrm{ex}\right)^{−\mathrm{1}} \\ $$
Question Number 74649 Answers: 2 Comments: 1
Question Number 74647 Answers: 0 Comments: 2
Question Number 74639 Answers: 0 Comments: 4
$${If} \\ $$
Question Number 74634 Answers: 0 Comments: 6
Question Number 74632 Answers: 0 Comments: 1
Question Number 74623 Answers: 1 Comments: 1
Question Number 74622 Answers: 0 Comments: 4
$$\mathrm{Expand} \\ $$$$\mathrm{1}+\frac{\mathrm{2}}{\mathrm{3}}\centerdot\left(\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\sum}}\left[{cos}\left(\frac{\mathrm{2}\pi}{\mathrm{3}}{x}\right)\right]+\mathrm{2}{n}−\mathrm{2}\right) \\ $$
Question Number 74621 Answers: 1 Comments: 1
Question Number 74620 Answers: 1 Comments: 0
Question Number 74594 Answers: 1 Comments: 1
Question Number 74591 Answers: 0 Comments: 0
Question Number 74590 Answers: 1 Comments: 0
Question Number 74589 Answers: 1 Comments: 0
Question Number 74582 Answers: 1 Comments: 0
$${Find}\:{all}\:{values}\:{of}\:{x}: \\ $$$$\left(\mathrm{2}^{{x}} \right)^{{x}^{\mathrm{2}} −\mathrm{8}} =\mathrm{32} \\ $$
Question Number 74580 Answers: 1 Comments: 0
Question Number 74579 Answers: 0 Comments: 0
$${find}\:{the}\:{gradient}\:{of}\:{scalar}\:{point}\:{function}\:{being}\:{expressed}\:{in}\:{term}\:{of}\:{scalar}\:{triple}\:{product}\:{as}\:{u}=\left(\bar {{a}},\bar {{b}},\bar {{c}}\right)=\bar {{a}}.\bar {{b}}×\bar {{c}} \\ $$
Question Number 74573 Answers: 1 Comments: 1
$$\mathrm{Find}\:\left(\mathrm{turn}\:\mathrm{it}\:\mathrm{into}\:\mathrm{non}-\mathrm{segma}\:\mathrm{expression}\right) \\ $$$$\mathrm{1}+\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\sum}}\frac{\left(−\mathrm{1}\right)^{{k}} +\mathrm{3}}{\mathrm{2}} \\ $$
Question Number 74604 Answers: 0 Comments: 3
Question Number 74601 Answers: 0 Comments: 0
$${solve}\:\:\:{y}''+\:{a}\left({x}\right){y}={b}\left({x}\right)\: \\ $$$${the}\:\:{general}\:\:{form}\:{of}\:\:{the}\:{solution}\:{if}\:\:{possible} \\ $$$${or}\:\:{juzt}\:{a}\:{solving}\:{metbod} \\ $$
Question Number 74600 Answers: 1 Comments: 0
Question Number 74599 Answers: 0 Comments: 0
$$\mathrm{Hello},\mathrm{verry}\:\mathrm{Nice}\:\mathrm{day}\: \\ $$$$\mathrm{let}\:\mathrm{U}_{\mathrm{n}} =\mathrm{E}\left(\left(\frac{\mathrm{3}+\sqrt{\mathrm{17}}}{\mathrm{2}}\right)^{\mathrm{n}} \right),\mathrm{n}\in\mathbb{N}^{\ast} \\ $$$$\mathrm{show}\:\mathrm{that}\:\mathrm{U}_{\mathrm{n}} \equiv\mathrm{n}\left(\mathrm{2}\right) \\ $$
Pg 1378 Pg 1379 Pg 1380 Pg 1381 Pg 1382 Pg 1383 Pg 1384 Pg 1385 Pg 1386 Pg 1387
Terms of Service
Privacy Policy
Contact: info@tinkutara.com