Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1383
Question Number 66401 Answers: 0 Comments: 0
Question Number 66399 Answers: 0 Comments: 1
$${Show}\:{that}\:{for}\:{all}\:{real} \\ $$$${values}\:{of}\:{x};\: \\ $$$$\:\:{x}^{\frac{\mathrm{2}}{\mathrm{3}}} \:+\:\mathrm{6}{x}^{\frac{\mathrm{1}}{\mathrm{3}}} \:+\:\mathrm{10}\:>\mathrm{0} \\ $$
Question Number 66396 Answers: 1 Comments: 0
$$\: \\ $$$$\:\boldsymbol{\mathrm{Seja}}\:\:\mathrm{53}^{\boldsymbol{\mathrm{log}}_{\frac{\mathrm{1}}{\sqrt{\boldsymbol{{e}}^{\boldsymbol{\pi}} }}} \left[\sqrt[{\mathrm{9999999}}]{\left(\boldsymbol{{x}}+\mathrm{11}\right)!}\right]} \:=\:\mathrm{1}. \\ $$$$\: \\ $$$$\: \\ $$$$\: \\ $$$$\:\boldsymbol{\mathrm{Calcule}}\:\:\frac{\boldsymbol{\mathrm{x}}_{\mathrm{1}} }{\boldsymbol{\mathrm{x}}_{\mathrm{2}} }+\mathrm{0},\mathrm{9}. \\ $$
Question Number 66413 Answers: 1 Comments: 0
$$\: \\ $$$$\:\:\sqrt{\mathrm{8}+\boldsymbol{\mathrm{log}}_{\mathrm{6}} \left(\boldsymbol{\mathrm{x}}!\right)}+\sqrt{\mathrm{17}−\boldsymbol{\mathrm{log}}_{\boldsymbol{\mathrm{x}}!} \left(\mathrm{6}\right)}\:=\:\mathrm{7} \\ $$$$\: \\ $$
Question Number 66412 Answers: 1 Comments: 3
$${if} \\ $$$$ \\ $$$${f}\left({x}\right)={ln}\left({x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}\right) \\ $$$$ \\ $$$${find} \\ $$$$ \\ $$$${f}^{−\mathrm{1}} \left({x}\right)=? \\ $$
Question Number 66382 Answers: 0 Comments: 14
$${Give}\:{me}\:{any}\:{Quintic},\:{i}\:{shall}\:{solve} \\ $$$${it}.\:{For}\:{sure}! \\ $$$${At}^{\mathrm{5}} +{Bt}^{\mathrm{4}} +{Ct}^{\mathrm{3}} +{Dt}^{\mathrm{2}} +{Et}+{F}=\mathrm{0} \\ $$$${wont}\:{even}\:{assume}\:{A}=\mathrm{1},\:{or}\:{B}=\mathrm{0}. \\ $$$${but}\:{if}\:{A}+{C}+{E}={B}+{D}+{F}\: \\ $$$${then}\:{my}\:{formula}\:{dont}\:{work} \\ $$$${but}\:{then}\:{obviously}\:{t}=−\mathrm{1}\:{is}\:{a}\:{root}! \\ $$
Question Number 66379 Answers: 0 Comments: 2
Question Number 66381 Answers: 0 Comments: 0
Question Number 66356 Answers: 1 Comments: 0
Question Number 66355 Answers: 0 Comments: 1
$${V}\mathrm{alue}\:\mathrm{of}\:{x}\:\mathrm{satiesfied}\:{y}=\frac{\mathrm{log}_{\mathrm{4}} \left({x}^{\mathrm{2}} −\mathrm{1}\right)}{\mathrm{4}{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{1}} \\ $$$${negative}\:{value}\:\mathrm{is}... \\ $$$$\mathrm{a}.\:−\mathrm{1}<{x}<\sqrt{\mathrm{2}} \\ $$$${b}.\:−\sqrt{\mathrm{2}}<{x}<\mathrm{1} \\ $$$${c}.\:−\sqrt{\mathrm{2}}<{x}<\sqrt{\mathrm{2}} \\ $$$${d}.\:−\sqrt{\mathrm{2}}<{x}<−\mathrm{1} \\ $$$${e}.\:{x}<−\mathrm{2} \\ $$
Question Number 66354 Answers: 0 Comments: 1
$$\mathrm{If}\:\:\mathrm{2}{x}+{y}=\mathrm{8}\:\mathrm{and} \\ $$$$\left({x}+{y}\right)=\frac{\mathrm{3}}{\mathrm{2}}\mathrm{log}_{\mathrm{10}} \:\mathrm{2}.\mathrm{log}_{\mathrm{8}} \mathrm{36} \\ $$$$\mathrm{then}\:\mathrm{x}^{\mathrm{2}} +\mathrm{3y}=... \\ $$$$\mathrm{a}.\:\mathrm{28} \\ $$$$\mathrm{b}.\:\mathrm{22} \\ $$$$\mathrm{c}.\:\mathrm{20} \\ $$$$\mathrm{d}.\:\mathrm{16} \\ $$$$\mathrm{e}.\:\mathrm{12} \\ $$
Question Number 66351 Answers: 0 Comments: 1
$${let}\:{I}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{{nt}} }{\left(\mathrm{1}+{e}^{{t}} \right)^{{n}+\mathrm{1}} }{dt}\:\:\:\:\:\left({n}\:{from}\:{N}^{\bigstar} \right) \\ $$$$\left.\right){prove}\:{the}\:{existence}\:{of}\:{I}_{{n}} \\ $$$$\left.\mathrm{2}\right){find}\:{lim}_{{n}\rightarrow+\infty} \:\:\:{I}_{{n}} \\ $$
Question Number 66350 Answers: 0 Comments: 1
$${study}\:{the}\:{convergence}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\left(\mathrm{1}−\sqrt{\frac{{x}^{{n}} }{\mathrm{2}+{x}^{{n}} }}\right){dx}\:\:\:\:{n}\in{N} \\ $$
Question Number 66349 Answers: 0 Comments: 1
$${study}\:{the}\:{convergence}\:{of}\:\int_{\mathrm{1}} ^{+\infty} \:\:\frac{{arctan}\left({x}−\mathrm{1}\right)}{\left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\frac{\mathrm{4}}{\mathrm{3}}} }{dx} \\ $$
Question Number 66348 Answers: 0 Comments: 0
$${find}\:{nature}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dx}}{{e}^{{x}} −{cosx}} \\ $$
Question Number 66347 Answers: 0 Comments: 0
$${let}\:{I}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{x}^{\mathrm{2}{n}+\mathrm{1}} {ln}\left({x}\right)}{{x}^{\mathrm{2}} −\mathrm{1}}{dx} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{the}\:{existence}\:{of}\:{I}_{{n}} \\ $$$$\left.\mathrm{2}\right){calculate}\:{I}_{{n}+\mathrm{1}} −{I}_{{n}} \\ $$$$\left.\mathrm{3}\left.\right){prove}\:{thst}\:{x}\in\right]\mathrm{0},\mathrm{1}\left[\:\Rightarrow\mathrm{0}<\frac{{xlnx}}{{x}^{\mathrm{2}} −\mathrm{1}}<\frac{\mathrm{1}}{\mathrm{2}}\right. \\ $$$$\left.\mathrm{4}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} \:{I}_{{n}} \\ $$
Question Number 66346 Answers: 0 Comments: 2
$${find}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{t}^{\mathrm{7}} }{{t}^{\mathrm{16}} \:+\mathrm{1}}{dt} \\ $$
Question Number 66345 Answers: 0 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{dt}}{\left({t}^{\mathrm{2}} −\mathrm{2}{t}\:+\mathrm{2}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} } \\ $$
Question Number 66344 Answers: 0 Comments: 1
$${let}\:{f}_{{n}} \left({x}\right)=\frac{\mathrm{1}}{\left(\mathrm{1}+{x}^{{n}} \right)^{\mathrm{1}+\frac{\mathrm{1}}{{n}}} }\:\:\:{defined}\:{on}\:\left[\mathrm{0},\mathrm{1}\right] \\ $$$$\left.\mathrm{1}\right){prove}\:{that}\:{f}_{{n}} \rightarrow^{{cs}} \:\:{to}\:{a}\:{function}\:{f}\:{on}\left[\mathrm{0},\mathrm{1}\right] \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{I}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} {f}_{{n}} \left({x}\right){dx} \\ $$
Question Number 66342 Answers: 0 Comments: 0
$${let}\:{U}_{{n}} =\int_{{n}} ^{{n}+\mathrm{2}} \:\:\frac{\left({t}+{n}\right)^{\frac{\mathrm{1}}{\mathrm{4}}} }{{t}^{\frac{\mathrm{1}}{\mathrm{3}}} }{dt}\:\:{prove}\:{that}\:{lim}_{{n}\rightarrow+\infty} {U}_{{n}} =\mathrm{0} \\ $$
Question Number 66341 Answers: 0 Comments: 1
$${find}\:{lim}_{{n}\rightarrow+\infty} \:\:\:\frac{\mathrm{1}}{{n}^{\mathrm{4}} }\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{{k}^{\mathrm{3}} }{\sqrt{\left(\mathrm{1}+\left(\frac{{k}}{{n}}\right)^{\mathrm{2}} \right)^{\mathrm{3}} }} \\ $$
Question Number 66340 Answers: 0 Comments: 1
$${find}\:\:\int_{\mathrm{0}} ^{\mathrm{2}} \sqrt{{x}^{\mathrm{3}} \left(\mathrm{2}−{x}\right)}{dx} \\ $$
Question Number 66339 Answers: 0 Comments: 1
$${calculate}\:\int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{1}} \:\frac{{dx}}{\sqrt{\mathrm{4}{x}^{\mathrm{2}} −\mathrm{1}}+\sqrt{\mathrm{4}{x}^{\mathrm{2}} \:+\mathrm{1}}} \\ $$
Question Number 66338 Answers: 0 Comments: 1
$${find}\:\int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\frac{\mathrm{5}}{\mathrm{4}}} \:\:\:\frac{{x}^{\mathrm{3}} {dx}}{\sqrt{\mathrm{2}+{x}−{x}^{\mathrm{2}} }} \\ $$
Question Number 66337 Answers: 0 Comments: 2
$${calculate}\:\int_{−\mathrm{7}} ^{−\mathrm{3}} \:\:\frac{\left({x}−\mathrm{1}\right){dx}}{\sqrt{{x}^{\mathrm{2}} \:+\mathrm{2}{x}−\mathrm{3}}} \\ $$
Question Number 66336 Answers: 0 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{{tanx}}{\sqrt{\mathrm{2}}{cosx}\:+\mathrm{2}{sin}^{\mathrm{2}} {x}}{dx} \\ $$
Pg 1378 Pg 1379 Pg 1380 Pg 1381 Pg 1382 Pg 1383 Pg 1384 Pg 1385 Pg 1386 Pg 1387
Terms of Service
Privacy Policy
Contact: info@tinkutara.com