Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 138

Question Number 208066    Answers: 2   Comments: 0

Question Number 208063    Answers: 1   Comments: 0

{ ((x + (3/5) y = 5)),(((3/5) x + y = 11)) :} ⇒ x + y = ?

$$\begin{cases}{\mathrm{x}\:+\:\frac{\mathrm{3}}{\mathrm{5}}\:\mathrm{y}\:=\:\mathrm{5}}\\{\frac{\mathrm{3}}{\mathrm{5}}\:\mathrm{x}\:+\:\mathrm{y}\:=\:\mathrm{11}}\end{cases}\:\:\:\:\:\Rightarrow\:\:\mathrm{x}\:+\:\mathrm{y}\:=\:? \\ $$

Question Number 208062    Answers: 1   Comments: 0

find ∫_4 ^∞ (dx/((x+1)^3 (x−3)^5 ))

$${find}\:\:\int_{\mathrm{4}} ^{\infty} \:\:\:\:\frac{{dx}}{\left({x}+\mathrm{1}\right)^{\mathrm{3}} \left({x}−\mathrm{3}\right)^{\mathrm{5}} } \\ $$

Question Number 208052    Answers: 0   Comments: 3

Sketch the curve y = x^3 . (a) Find the equation of the tangent to the curve at A(1,1). (b) Find the coordinates of point B, where the tangent meets the curve again. (c) Calculate the area between the tangent B and the arc AB of the curve.

$${Sketch}\:{the}\:{curve}\:{y}\:=\:{x}^{\mathrm{3}} . \\ $$$$\left({a}\right)\:{Find}\:{the}\:{equation}\:{of}\:{the}\:{tangent} \\ $$$${to}\:{the}\:{curve}\:{at}\:{A}\left(\mathrm{1},\mathrm{1}\right). \\ $$$$\left({b}\right)\:{Find}\:{the}\:{coordinates}\:{of}\:{point}\:{B}, \\ $$$${where}\:{the}\:{tangent}\:{meets}\:{the}\:{curve}\:{again}. \\ $$$$\left({c}\right)\:{Calculate}\:{the}\:{area}\:{between}\:{the} \\ $$$${tangent}\:{B}\:{and}\:{the}\:{arc}\:{AB}\:{of}\:{the}\:{curve}. \\ $$

Question Number 208049    Answers: 1   Comments: 1

Question Number 208045    Answers: 1   Comments: 1

can someone please explain how can i write limit there is no option for it in the menu.

$$\mathrm{can}\:\mathrm{someone}\:\mathrm{please}\:\mathrm{explain}\:\mathrm{how}\:\mathrm{can}\:\mathrm{i}\:\mathrm{write}\:\mathrm{limit} \mathrm{there}\:\mathrm{is}\:\mathrm{no}\:\mathrm{option}\:\mathrm{for}\:\mathrm{it} \mathrm{in}\:\mathrm{the}\:\mathrm{menu}. \\ $$$$ \\ $$

Question Number 208037    Answers: 1   Comments: 0

Find: 2 log_(√5) sin (π/7) ∙ log_(√(sin (𝛑/7))) 5 = ?

$$\mathrm{Find}:\:\:\:\mathrm{2}\:\mathrm{log}_{\sqrt{\mathrm{5}}} \:\:\mathrm{sin}\:\frac{\pi}{\mathrm{7}}\:\centerdot\:\mathrm{log}_{\sqrt{\boldsymbol{\mathrm{sin}}\:\frac{\boldsymbol{\pi}}{\mathrm{7}}}} \:\:\mathrm{5}\:\:=\:\:? \\ $$

Question Number 208034    Answers: 1   Comments: 1

Question Number 208031    Answers: 1   Comments: 0

we have y=f(x) function, if we transfer its graph C unit vertically and gain the new function y=f(x)±C, it′s meant y is increased or decreased C units. if we transfer the graph of considered function horizontally, we gain the new function y=f(x±C), what does mean it?

$${we}\:{have}\:{y}={f}\left({x}\right)\:{function},\:{if}\:{we}\:{transfer} \\ $$$${its}\:{graph}\:{C}\:{unit}\:{vertically}\:{and}\:{gain} \\ $$$${the}\:{new}\:{function}\:{y}={f}\left({x}\right)\pm{C},\:{it}'{s}\:{meant} \\ $$$${y}\:{is}\:{increased}\:{or}\:{decreased}\:\:{C}\:{units}. \\ $$$${if}\:{we}\:{transfer}\:{the}\:{graph}\:{of}\:{considered} \\ $$$${function}\:{horizontally},\:{we}\:{gain}\:{the}\:{new}\:{function} \\ $$$${y}={f}\left({x}\pm{C}\right),\:{what}\:{does}\:{mean}\:{it}? \\ $$

Question Number 208023    Answers: 1   Comments: 0

Question Number 208021    Answers: 4   Comments: 0

Question Number 208020    Answers: 1   Comments: 0

{ (((1/x)+(1/y)=((14)/(625)))),(((√x)+(√y)=8)) :} Find all solutions.

$$\begin{cases}{\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}=\frac{\mathrm{14}}{\mathrm{625}}}\\{\sqrt{{x}}+\sqrt{{y}}=\mathrm{8}}\end{cases} \\ $$$$\mathrm{Find}\:\mathrm{all}\:\mathrm{solutions}. \\ $$

Question Number 208011    Answers: 1   Comments: 6

Question Number 208003    Answers: 4   Comments: 0

Question Number 207999    Answers: 0   Comments: 0

Question Number 207991    Answers: 2   Comments: 0

y y

$$\:\:\:\:\:\mathrm{y} \mathrm{y} \\ $$

Question Number 207986    Answers: 1   Comments: 0

(x−3)^(√(x−3 )) = 3

$$\left({x}−\mathrm{3}\right)^{\sqrt{{x}−\mathrm{3}\:}} \:\:=\:\mathrm{3} \\ $$

Question Number 207985    Answers: 1   Comments: 0

Question Number 207984    Answers: 1   Comments: 0

Question Number 207980    Answers: 1   Comments: 0

In AB^Δ C : B= 90^( o) BB′ ⊥ CC′ ( BB′ and CC′ are medians) ⇒ (m_c /(m_a )) = ? note: ∣ CC′ ∣ = m_c , ∣AA′∣= m_a

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:{In}\:\:\:{A}\overset{\Delta} {{B}C}\::\:\:{B}=\:\mathrm{90}^{\:\mathrm{o}} \: \\ $$$$\:\mathrm{BB}'\:\:\bot\:\mathrm{CC}'\:\left(\:\mathrm{BB}'\:{and}\:\mathrm{CC}'\:{are}\:{medians}\right) \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\:\:\:\:\frac{\boldsymbol{{m}}_{\boldsymbol{{c}}} }{\boldsymbol{{m}}_{\boldsymbol{{a}}} \:}\:=\:? \\ $$$$\boldsymbol{{note}}:\:\:\mid\:\mathrm{CC}'\:\mid\:=\:\boldsymbol{{m}}_{\boldsymbol{{c}}} \:\:,\:\mid\mathrm{AA}'\mid=\:\boldsymbol{{m}}_{\boldsymbol{{a}}} \\ $$

Question Number 207979    Answers: 1   Comments: 3

generate nth term for the sequence: 1, 1, 1, 2, 3, 5, 9, 18, 35, 75

generate nth term for the sequence: 1, 1, 1, 2, 3, 5, 9, 18, 35, 75

Question Number 207963    Answers: 0   Comments: 1

(√( ( / ) (√( ( / ))))) = ∈

$$\:\: \sqrt{ \frac{ }{ } \sqrt{ \frac{ }{ }}}\:=\: \\ $$$$ \: \in\: \\ $$

Question Number 207954    Answers: 2   Comments: 0

y=(x_1 /(x_1 +x_2 ))

$$ \\ $$$${y}=\frac{{x}_{\mathrm{1}} }{{x}_{\mathrm{1}} +{x}_{\mathrm{2}} } \\ $$

Question Number 207951    Answers: 0   Comments: 3

Anybody with knowledge or books on mathemtical modeling?

$$\mathrm{Anybody}\:\mathrm{with}\:\mathrm{knowledge}\:\mathrm{or}\:\mathrm{books}\:\mathrm{on} \\ $$$$\mathrm{mathemtical}\:\mathrm{modeling}? \\ $$

Question Number 207950    Answers: 0   Comments: 0

Question Number 207949    Answers: 2   Comments: 0

Find the value of : 𝛀 = ∫_0 ^( (𝛑/2)) (( dx)/(sin^6 x + cos^6 x)) = ? −−−−−−−−−

$$ \\ $$$$\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:{Find}\:{the}\:{value}\:{of}\:: \\ $$$$ \\ $$$$\:\:\:\:\boldsymbol{\Omega}\:=\:\int_{\mathrm{0}} ^{\:\frac{\boldsymbol{\pi}}{\mathrm{2}}} \:\frac{\:\boldsymbol{{dx}}}{\boldsymbol{{sin}}^{\mathrm{6}} \boldsymbol{{x}}\:+\:\boldsymbol{{cos}}^{\mathrm{6}} \boldsymbol{{x}}}\:=\:?\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−−−−−−−−− \\ $$

  Pg 133      Pg 134      Pg 135      Pg 136      Pg 137      Pg 138      Pg 139      Pg 140      Pg 141      Pg 142   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com