Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 138

Question Number 208292    Answers: 1   Comments: 0

let T be a n×n matrix with integral entries and Q = T + (1/2)I where I denote the n×n identity matrix then prove that matrix Q is invertible

$$\:\mathrm{let}\:\mathrm{T}\:\mathrm{be}\:\mathrm{a}\:{n}×{n}\:\mathrm{matrix}\:\mathrm{with}\:\mathrm{integral}\: \\ $$$$\:\mathrm{entries}\:\mathrm{and}\:\:\mathrm{Q}\:=\:\mathrm{T}\:+\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{I}\:\:\:\mathrm{where}\:\mathrm{I}\:\mathrm{denote} \\ $$$$\:\:\mathrm{the}\:\mathrm{n}×\mathrm{n}\:\mathrm{identity}\:\mathrm{matrix}\:\mathrm{then}\:\mathrm{prove} \\ $$$$\:\:\mathrm{that}\:\mathrm{matrix}\:\mathrm{Q}\:\mathrm{is}\:\mathrm{invertible} \\ $$

Question Number 208288    Answers: 2   Comments: 0

Question Number 208282    Answers: 1   Comments: 2

If cosα−cosβ = (1/5) sinα + sinβ = (1/2) Find cos(α + β) = ?

$$\mathrm{If}\:\:\:\mathrm{cos}\alpha−\mathrm{cos}\beta\:=\:\frac{\mathrm{1}}{\mathrm{5}}\:\mathrm{sin}\alpha\:+\:\mathrm{sin}\beta\:=\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{Find}\:\:\:\mathrm{cos}\left(\alpha\:+\:\beta\right)\:=\:? \\ $$

Question Number 208280    Answers: 1   Comments: 0

L=∫_0 ^(4/π) ln(cosx)dx

$${L}=\int_{\mathrm{0}} ^{\frac{\mathrm{4}}{\pi}} {ln}\left({cosx}\right){dx} \\ $$

Question Number 208277    Answers: 2   Comments: 0

Question Number 208269    Answers: 2   Comments: 1

Question Number 208264    Answers: 1   Comments: 0

e^x .

$$\:\: \mathrm{e}^{\mathrm{x}} . \\ $$

Question Number 208263    Answers: 1   Comments: 0

Question Number 208259    Answers: 2   Comments: 0

Question Number 208256    Answers: 0   Comments: 1

^2 ((( π)/ )) + ^2 ((( π)/ )) + ^2 ((( π)/ ))=?

$$\: ^{\mathrm{2}} \left(\frac{ \pi}{ }\right)\:+\: ^{\mathrm{2}} \left(\frac{ \pi}{ }\right)\:+\: ^{\mathrm{2}} \left(\frac{ \pi}{ }\right)=? \\ $$

Question Number 208252    Answers: 1   Comments: 0

cos (((2π)/(21)))cos (((4π)/(21)))cos (((8π)/(21)))cos (((10π)/(22)))cos (((16π)/(21)))cos (((20π)/(21)))=?

$$\:\mathrm{cos}\:\left(\frac{\mathrm{2}\pi}{\mathrm{21}}\right)\mathrm{cos}\:\left(\frac{\mathrm{4}\pi}{\mathrm{21}}\right)\mathrm{cos}\:\left(\frac{\mathrm{8}\pi}{\mathrm{21}}\right)\mathrm{cos}\:\left(\frac{\mathrm{10}\pi}{\mathrm{22}}\right)\mathrm{cos}\:\left(\frac{\mathrm{16}\pi}{\mathrm{21}}\right)\mathrm{cos}\:\left(\frac{\mathrm{20}\pi}{\mathrm{21}}\right)=? \\ $$

Question Number 208251    Answers: 0   Comments: 0

Question Number 208245    Answers: 1   Comments: 0

K=∫_0 ^(4/π) ln(cosx)dx

$${K}=\int_{\mathrm{0}} ^{\frac{\mathrm{4}}{\pi}} {ln}\left({cosx}\right){dx} \\ $$

Question Number 208242    Answers: 1   Comments: 1

Question Number 208241    Answers: 1   Comments: 0

Solve for p, q, r p+q+r=α p^2 +q^2 +r^2 =β pq=r

$$\mathrm{Solve}\:\mathrm{for}\:{p},\:{q},\:{r} \\ $$$${p}+{q}+{r}=\alpha \\ $$$${p}^{\mathrm{2}} +{q}^{\mathrm{2}} +{r}^{\mathrm{2}} =\beta \\ $$$${pq}={r} \\ $$

Question Number 208238    Answers: 1   Comments: 0

Show that (π/4) < ∫_0 ^1 (√(1−x^4 ))dx using x = sint show that ∫_0 ^1 (√(1−x^4 ))dx<((2(√2))/3) using (∫_0 ^1 f(x)g(x)dx)^2 <∫_0 ^1 (f(x))^2 dx∫_0 ^1 (g(x))^2 dx

$$\mathrm{S}{how}\:{that} \\ $$$$\frac{\pi}{\mathrm{4}}\:<\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\sqrt{\mathrm{1}−{x}^{\mathrm{4}} }{dx}\:{using}\:{x}\:=\:{sint} \\ $$$${show}\:{that}\:\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}−{x}^{\mathrm{4}} }{dx}<\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{3}} \\ $$$${using}\:\left(\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({x}\right){g}\left({x}\right){dx}\right)^{\mathrm{2}} <\int_{\mathrm{0}} ^{\mathrm{1}} \left({f}\left({x}\right)\right)^{\mathrm{2}} {dx}\int_{\mathrm{0}} ^{\mathrm{1}} \left({g}\left({x}\right)\right)^{\mathrm{2}} {dx} \\ $$

Question Number 208235    Answers: 2   Comments: 0

Question Number 208218    Answers: 1   Comments: 4

a_n numbers series If S_(16) − S_(13) = S_(106) − S_(103) Find: ((3a_3 + 4a_4 + 5a_5 )/(2a_(12) )) = ?

$$\mathrm{a}_{\boldsymbol{\mathrm{n}}} \:\:\mathrm{numbers}\:\mathrm{series} \\ $$$$\mathrm{If}\:\:\mathrm{S}_{\mathrm{16}} \:−\:\mathrm{S}_{\mathrm{13}} \:\:=\:\:\mathrm{S}_{\mathrm{106}} \:−\:\mathrm{S}_{\mathrm{103}} \\ $$$$\mathrm{Find}:\:\:\:\:\frac{\mathrm{3a}_{\mathrm{3}} \:+\:\mathrm{4a}_{\mathrm{4}} \:+\:\mathrm{5a}_{\mathrm{5}} }{\mathrm{2a}_{\mathrm{12}} }\:\:=\:\:? \\ $$

Question Number 208217    Answers: 3   Comments: 0

1^2 +2^2 +3^2 +5^2 +8^2 +13^2 +21^2 =?

$$\mathrm{1}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} +\mathrm{5}^{\mathrm{2}} +\mathrm{8}^{\mathrm{2}} +\mathrm{13}^{\mathrm{2}} +\mathrm{21}^{\mathrm{2}} =? \\ $$

Question Number 208215    Answers: 2   Comments: 0

If (1/R) = (1/R_1 ) + (1/R_2 ) [R_1 , R_2 > 0] and R_1 + R_2 = C (Constant) then prove that R will be maximum when R_1 = R_2 .

$$\mathrm{If}\:\frac{\mathrm{1}}{\mathrm{R}}\:=\:\frac{\mathrm{1}}{\mathrm{R}_{\mathrm{1}} }\:+\:\frac{\mathrm{1}}{\mathrm{R}_{\mathrm{2}} }\:\left[\mathrm{R}_{\mathrm{1}} ,\:\mathrm{R}_{\mathrm{2}} \:>\:\mathrm{0}\right]\:\mathrm{and}\: \\ $$$$\mathrm{R}_{\mathrm{1}} \:+\:\mathrm{R}_{\mathrm{2}} \:=\:\mathrm{C}\:\left(\mathrm{Constant}\right)\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that} \\ $$$$\mathrm{R}\:\mathrm{will}\:\mathrm{be}\:\mathrm{maximum}\:\mathrm{when}\:\mathrm{R}_{\mathrm{1}} \:=\:\mathrm{R}_{\mathrm{2}} . \\ $$

Question Number 208205    Answers: 1   Comments: 0

∫ (x^3 . 5^(2x^2 −2) ) dx =?

$$\:\:\:\int\:\left({x}^{\mathrm{3}} .\:\mathrm{5}^{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{2}} \:\right)\:{dx}\:=? \\ $$

Question Number 208199    Answers: 2   Comments: 0

Question Number 208194    Answers: 2   Comments: 0

I_n = ∫_(0 ) ^∞ (1/((1+x^2 )^n ))dx prove that Σ_(n=1) ^∞ (I_n /n) = π

$$\:\:\:\:\:\:\:\:{I}_{{n}} \:=\:\:\int_{\mathrm{0}\:} ^{\infty} \frac{\mathrm{1}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{{n}} }{dx} \\ $$$$\:\:{prove}\:{that}\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{I}_{{n}} }{{n}}\:\:=\:\:\pi \\ $$

Question Number 208187    Answers: 1   Comments: 0

Find: 1,03^(200) = ?

$$\mathrm{Find}:\:\:\:\mathrm{1},\mathrm{03}^{\mathrm{200}} \:=\:? \\ $$

Question Number 208178    Answers: 5   Comments: 3

Question Number 208176    Answers: 1   Comments: 1

Find the value of the folloing integral. determinant ((( 𝛀=∫_0 ^( (𝛑/2)) (( 1)/(1 + (( cosx))^(1/3) )) dx = ? )))

$$ \\ $$$$\:\:\:\:\:\boldsymbol{{Find}}\:\boldsymbol{{the}}\:\boldsymbol{{value}}\:\boldsymbol{{of}}\:\boldsymbol{{the}} \\ $$$$\:\:\:\:\:\:\:\boldsymbol{{folloing}}\:\boldsymbol{{integral}}. \\ $$$$\:\:\:\:\:\:\: \\ $$$$\begin{array}{|c|}{\:\:\:\boldsymbol{\Omega}=\int_{\mathrm{0}} ^{\:\frac{\boldsymbol{\pi}}{\mathrm{2}}} \:\frac{\:\mathrm{1}}{\mathrm{1}\:+\:\sqrt[{\mathrm{3}}]{\:\boldsymbol{{cosx}}}}\:\boldsymbol{{dx}}\:=\:?\:\:}\\\hline\end{array} \\ $$$$\:\:\:\:\:\:\: \\ $$

  Pg 133      Pg 134      Pg 135      Pg 136      Pg 137      Pg 138      Pg 139      Pg 140      Pg 141      Pg 142   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com