Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1378

Question Number 74560    Answers: 0   Comments: 1

Question Number 74522    Answers: 0   Comments: 3

A rope inclined at angle 37° to the horizontal is used to drag a 50kg block along a level floor with an acceleration of 1m/s^2 .The coefficient of friction between the block and the floor is 0.2. What is the tension in the rope?

$${A}\:{rope}\:{inclined}\:{at}\:{angle}\:\mathrm{37}°\:{to}\:{the}\: \\ $$$${horizontal}\:{is}\:{used}\:{to}\:{drag}\:{a}\:\mathrm{50}{kg}\:{block} \\ $$$${along}\:{a}\:{level}\:{floor}\:{with}\:{an}\:{acceleration} \\ $$$${of}\:\mathrm{1}{m}/{s}^{\mathrm{2}} \:.{The}\:{coefficient}\:{of}\:{friction} \\ $$$${between}\:{the}\:{block}\:{and}\:{the}\:{floor}\:{is}\:\mathrm{0}.\mathrm{2}. \\ $$$${What}\:{is}\:{the}\:{tension}\:{in}\:{the}\:{rope}? \\ $$

Question Number 74520    Answers: 1   Comments: 0

Question Number 74515    Answers: 0   Comments: 0

Question Number 74508    Answers: 0   Comments: 0

li=x^− −t_v ,(α/2).((s/(√n))) ls=x^− +t_v ,(α/2).((s/(√n)))

$${li}=\overset{−} {{x}}−{t}_{{v}} ,\frac{\alpha}{\mathrm{2}}.\left(\frac{{s}}{\sqrt{{n}}}\right) \\ $$$${ls}=\overset{−} {{x}}+{t}_{{v}} ,\frac{\alpha}{\mathrm{2}}.\left(\frac{{s}}{\sqrt{{n}}}\right) \\ $$$$ \\ $$

Question Number 74502    Answers: 1   Comments: 4

let f(x)=e^(−nx) ln(1+x^2 ) 1)determine f^((n)) (x) and f^((n)) (0) 2)developp f at integr serie (n integr natural)

$${let}\:{f}\left({x}\right)={e}^{−{nx}} {ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right) \\ $$$$\left.\mathrm{1}\right){determine}\:{f}^{\left({n}\right)} \left({x}\right)\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right){developp}\:{f}\:{at}\:{integr}\:{serie}\:\:\:\left({n}\:{integr}\:{natural}\right) \\ $$

Question Number 74501    Answers: 0   Comments: 1

let P(x)=(1/(n!))(x^2 −1)^n calculate P^((n)) (x) and P^( (n)) (0)

$$\:{let}\:{P}\left({x}\right)=\frac{\mathrm{1}}{{n}!}\left({x}^{\mathrm{2}} −\mathrm{1}\right)^{{n}} \\ $$$${calculate}\:{P}^{\left({n}\right)} \left({x}\right)\:\:{and}\:{P}^{\:\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$

Question Number 74500    Answers: 0   Comments: 0

1) decompose the fraction F(x)=((x^3 −2)/((x+1)^4 (x−2)^3 )) 2)find ∫_3 ^(+∞) F(x)dx

$$\left.\mathrm{1}\right)\:{decompose}\:{the}\:{fraction}\:{F}\left({x}\right)=\frac{{x}^{\mathrm{3}} −\mathrm{2}}{\left({x}+\mathrm{1}\right)^{\mathrm{4}} \left({x}−\mathrm{2}\right)^{\mathrm{3}} } \\ $$$$\left.\mathrm{2}\right){find}\:\:\:\int_{\mathrm{3}} ^{+\infty} \:{F}\left({x}\right){dx} \\ $$

Question Number 74499    Answers: 0   Comments: 1

decompose inside C(x) the fraction f(x)=(1/((x^2 +1)^n ))

$${decompose}\:{inside}\:{C}\left({x}\right)\:{the}\:{fraction} \\ $$$${f}\left({x}\right)=\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{{n}} } \\ $$

Question Number 74498    Answers: 1   Comments: 1

1) calculte A_n =∫_0 ^∞ e^(−nx) [e^x ] dx with n integr and n≥2 2)find lim_(n→+∞) n^n A_n

$$\left.\mathrm{1}\right)\:{calculte}\:\:{A}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:{e}^{−{nx}} \left[{e}^{{x}} \right]\:{dx}\:\:\:{with}\:{n}\:{integr}\:{and}\:{n}\geqslant\mathrm{2} \\ $$$$\left.\mathrm{2}\right){find}\:{lim}_{{n}\rightarrow+\infty} \:{n}^{{n}} \:{A}_{{n}} \\ $$

Question Number 74503    Answers: 0   Comments: 1

Question Number 74492    Answers: 0   Comments: 0

calculate ∫_0 ^∞ ((arctan(x^2 ))/(x^2 +9))dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left({x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} \:+\mathrm{9}}{dx} \\ $$

Question Number 74474    Answers: 1   Comments: 1

Question Number 74473    Answers: 1   Comments: 2

Question Number 74456    Answers: 1   Comments: 2

Question Number 74484    Answers: 0   Comments: 1

calculate ∫_0 ^∞ ((arctan(2x))/(x^2 +3))dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left(\mathrm{2}{x}\right)}{{x}^{\mathrm{2}} +\mathrm{3}}{dx} \\ $$

Question Number 74483    Answers: 1   Comments: 2

Question Number 74446    Answers: 1   Comments: 0

Question Number 74431    Answers: 0   Comments: 11

Question Number 74429    Answers: 0   Comments: 2

Question Number 74455    Answers: 1   Comments: 0

if K=(x∈R 2x−1+∣2x−1∣=0 )and J=(x∈R −x(2x+1)≤−1) find J−K.

$${if}\:{K}=\left({x}\in\mathbb{R}\:\mathrm{2}{x}−\mathrm{1}+\mid\mathrm{2}{x}−\mathrm{1}\mid=\mathrm{0}\:\right){and} \\ $$$${J}=\left({x}\in\mathbb{R}\:−{x}\left(\mathrm{2}{x}+\mathrm{1}\right)\leqslant−\mathrm{1}\right)\:{find}\:{J}−{K}. \\ $$

Question Number 74423    Answers: 0   Comments: 1

Question Number 74419    Answers: 0   Comments: 1

Question Number 74418    Answers: 1   Comments: 0

Question Number 74415    Answers: 1   Comments: 1

Question Number 74412    Answers: 0   Comments: 0

a,b,c are given real constants. p,q,r,t are unknowns from which we can choose values of two of them (non zero) and have to determine the other two (non zero), obeying two equations given below p^2 +q(1+bq)t^2 +q(ap+br)t +r(1+bq)t+r(ap+br) = 0 pt+q(a+cq)t^2 +r(a+cq)t +cqrt+cr^2 = 0 Can this be done solving a quadratic eq. and none higher..?

$${a},{b},{c}\:{are}\:{given}\:{real}\:{constants}. \\ $$$${p},{q},{r},{t}\:{are}\:{unknowns}\:{from}\:{which} \\ $$$${we}\:{can}\:{choose}\:{values}\:{of}\:{two}\:{of} \\ $$$${them}\:\left({non}\:{zero}\right)\:{and}\:{have}\:{to}\: \\ $$$${determine}\:{the}\:{other}\:{two}\:\left({non}\:{zero}\right), \\ $$$${obeying}\:\:{two}\:{equations}\:{given}\:{below} \\ $$$$\:{p}^{\mathrm{2}} +{q}\left(\mathrm{1}+{bq}\right){t}^{\mathrm{2}} +{q}\left({ap}+{br}\right){t} \\ $$$$\:\:\:\:\:+{r}\left(\mathrm{1}+{bq}\right){t}+{r}\left({ap}+{br}\right)\:=\:\mathrm{0} \\ $$$${pt}+{q}\left({a}+{cq}\right){t}^{\mathrm{2}} +{r}\left({a}+{cq}\right){t} \\ $$$$\:\:\:\:+{cqrt}+{cr}^{\mathrm{2}} =\:\mathrm{0} \\ $$$${Can}\:{this}\:{be}\:{done}\:{solving}\:{a} \\ $$$${quadratic}\:{eq}.\:{and}\:{none}\:{higher}..? \\ $$

  Pg 1373      Pg 1374      Pg 1375      Pg 1376      Pg 1377      Pg 1378      Pg 1379      Pg 1380      Pg 1381      Pg 1382   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com