Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1372
Question Number 74240 Answers: 1 Comments: 3
Question Number 74235 Answers: 3 Comments: 0
Question Number 74234 Answers: 0 Comments: 0
$${f}\left({x}\right)=\frac{\mathrm{1}}{\sqrt[{\mathrm{5}}]{\mathrm{4}{x}^{\mathrm{3}} }} \\ $$$$ \\ $$$${find}\:{f}^{\:} '\left({x}\right) \\ $$$$ \\ $$$${with}\:{using}\:\underset{{h}\rightarrow\mathrm{0}} {{lim}}\frac{{f}\left({x}+{h}\right)−{f}\left({x}\right)}{{h}} \\ $$
Question Number 74231 Answers: 1 Comments: 2
Question Number 74226 Answers: 0 Comments: 0
Question Number 74225 Answers: 1 Comments: 0
$${let}\:{p}\left({x}\right)=\left(\mathrm{1}+{jx}\right)^{{n}} −\left(\mathrm{1}−{jx}\right)^{{n}} \:\:{with}\:{j}={e}^{\frac{{i}\mathrm{2}\pi}{\mathrm{3}}} \\ $$$$\left.\mathrm{1}\right)\:{determine}\:{the}\:{roots}\:{of}\:{p}\left({x}\right)\:{and}\:{factorize}\:{P}\left({x}\right)\:{inside}\:{C}\left[{x}\right] \\ $$$$\left.\mathrm{2}\right)\:{decompose}\:{the}\:{fraction}\:{F}\left({x}\right)=\frac{\mathrm{1}}{{p}\left({x}\right)} \\ $$
Question Number 74224 Answers: 1 Comments: 2
$${find}\:\int\:\:\:\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{4}}} \:{cos}\left(\frac{\mathrm{1}}{\mathrm{2}}{arctan}\left(\frac{\mathrm{1}}{{x}}\right)\right){dx}\:\:{and} \\ $$$$\int\:\:\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{4}}} {sin}\left(\frac{\mathrm{1}}{\mathrm{2}}{arctan}\left(\frac{\mathrm{1}}{{x}}\right)\right){dx} \\ $$
Question Number 74223 Answers: 1 Comments: 0
$${calculate}\:\:{f}\left({a}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{{x}^{\mathrm{2}} +{ax}+\mathrm{1}}{dx}\:\:\:{and}\:{g}\left({a}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{xdx}}{\sqrt{{x}^{\mathrm{2}} +{ax}+\mathrm{1}}} \\ $$$${with}\:\:\mid{a}\mid<\mathrm{2} \\ $$$$\left.\mathrm{2}\right){find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{{x}^{\mathrm{2}} +\sqrt{\mathrm{2}}{x}+\mathrm{1}}{dx}\:{and}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{xdx}}{\sqrt{{x}^{\mathrm{2}} +\sqrt{\mathrm{2}}{x}+\mathrm{1}}} \\ $$
Question Number 74219 Answers: 0 Comments: 0
Question Number 74218 Answers: 1 Comments: 0
$${verify}\:{that}\:{y}\left({x}\right)={e}^{{x}} \left(\mathrm{cos}\:{e}^{{x}} −{e}^{{x}} \mathrm{sin}\:{e}^{{x}} \right)\:{is}\:{the}\:{solution}\:{of}\:{integral}\:{equation}\:{y}\left({x}\right)=\left(\mathrm{1}−{xe}^{\mathrm{2}{x}} \right)\mathrm{cos}\:\mathrm{1}−{e}^{\mathrm{2}{x}} \mathrm{sin}\:\mathrm{1}+\underset{\mathrm{0}} {\overset{{x}} {\int}}\left\{\mathrm{1}−\left({x}−{t}\right){e}^{\mathrm{2}{x}} \right\}{y}\left({t}\right){dt} \\ $$
Question Number 74214 Answers: 1 Comments: 0
Question Number 74213 Answers: 2 Comments: 1
Question Number 74211 Answers: 0 Comments: 1
Question Number 74210 Answers: 1 Comments: 0
$$\int{e}^{{t}} \mathrm{cos}\:{e}^{{t}} {dt} \\ $$
Question Number 74209 Answers: 1 Comments: 0
Question Number 74207 Answers: 0 Comments: 0
Question Number 74196 Answers: 0 Comments: 1
$${solve}\:{for}\:{x}: \\ $$$$\mathrm{4}^{{x}} +\mathrm{6}^{{x}} =\mathrm{9}^{{x}} \\ $$
Question Number 74191 Answers: 2 Comments: 0
$$\:\:\:\:\mathrm{9}{Y}\mathrm{4} \\ $$$$+\mathrm{75}{X} \\ $$$$\:\:\:\:{Z}\mathrm{86} \\ $$$$−−−− \\ $$$${W}\mathrm{387} \\ $$$${find}\:{X}+{Y}+{Z}+{W}. \\ $$
Question Number 74187 Answers: 0 Comments: 0
Question Number 74181 Answers: 1 Comments: 0
Question Number 74180 Answers: 0 Comments: 0
Question Number 74179 Answers: 0 Comments: 0
Question Number 74173 Answers: 1 Comments: 1
Question Number 74172 Answers: 0 Comments: 0
Question Number 74171 Answers: 0 Comments: 0
Question Number 74170 Answers: 0 Comments: 0
Pg 1367 Pg 1368 Pg 1369 Pg 1370 Pg 1371 Pg 1372 Pg 1373 Pg 1374 Pg 1375 Pg 1376
Terms of Service
Privacy Policy
Contact: info@tinkutara.com