Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1372
Question Number 76032 Answers: 0 Comments: 0
Question Number 76015 Answers: 0 Comments: 0
Question Number 76014 Answers: 0 Comments: 0
Question Number 76013 Answers: 1 Comments: 0
Question Number 76012 Answers: 1 Comments: 0
$$\mathrm{show}\:\mathrm{that}\: \\ $$$$\mathrm{1}−\mathrm{3sin}^{\mathrm{2}} {x}\mathrm{cos}^{\mathrm{2}} {x}=\frac{\mathrm{5}}{\mathrm{8}}+\frac{\mathrm{3}}{\mathrm{8}}\boldsymbol{\mathrm{cos}}\mathrm{4}\boldsymbol{{x}} \\ $$
Question Number 76009 Answers: 1 Comments: 0
$${hiw}\:{do}\:{i}\:{solve} \\ $$$$\mathrm{2}^{{x}} \:=\:\mathrm{4}{x}? \\ $$
Question Number 76003 Answers: 1 Comments: 0
$$\mathrm{22}+\mathrm{2} \\ $$
Question Number 75991 Answers: 1 Comments: 1
Question Number 75990 Answers: 0 Comments: 0
Question Number 75989 Answers: 0 Comments: 0
Question Number 75988 Answers: 0 Comments: 3
Question Number 75987 Answers: 1 Comments: 0
Question Number 75986 Answers: 1 Comments: 1
Question Number 75985 Answers: 1 Comments: 0
Question Number 75984 Answers: 1 Comments: 0
Question Number 75983 Answers: 0 Comments: 2
$$\mathrm{show}\:\mathrm{that} \\ $$$$\mathrm{cos}^{\mathrm{6}} \mathrm{x}+\mathrm{sin}^{\mathrm{6}} \mathrm{x}=\frac{\mathrm{1}}{\mathrm{8}}\left(\mathrm{5}+\mathrm{3cos4x}\right) \\ $$
Question Number 75976 Answers: 0 Comments: 3
$$\left.\mathrm{h}\left.\mathrm{ello}\:\:\mathrm{solve}\:\mathrm{it}\:\mathrm{in}\:\right]−\pi;\pi\right]\:\mathrm{and}\:\mathrm{place}\:\mathrm{solutions} \\ $$$$\mathrm{in}\:\mathrm{trigonometric}\:\mathrm{circle}. \\ $$$$\mathrm{cos}^{\mathrm{6}} \mathrm{x}+\mathrm{sin}^{\mathrm{6}} \mathrm{x}=\frac{\mathrm{3}}{\mathrm{8}}\left(\sqrt{\mathrm{3}}\mathrm{sin4x}+\frac{\mathrm{8}}{\mathrm{3}}\right) \\ $$$$\mathrm{please}\:\mathrm{help}\:\mathrm{me}... \\ $$
Question Number 76077 Answers: 2 Comments: 3
$$\boldsymbol{\mathrm{Find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{maximum}}\:\boldsymbol{\mathrm{area}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{an}}\:\boldsymbol{\mathrm{isosceles}}\:\boldsymbol{\mathrm{triangle}} \\ $$$$\boldsymbol{\mathrm{inscribed}}\:\boldsymbol{\mathrm{in}}\:\boldsymbol{\mathrm{an}}\:\boldsymbol{\mathrm{ellipse}}\:\frac{\boldsymbol{{x}}^{\mathrm{2}} }{\boldsymbol{{a}}^{\mathrm{2}} }\:+\:\frac{\boldsymbol{{y}}^{\mathrm{2}} }{\boldsymbol{{b}}^{\mathrm{2}} }\:=\:\mathrm{1}\boldsymbol{\mathrm{with}}\:\boldsymbol{\mathrm{its}}\:\boldsymbol{\mathrm{vetrex}}\: \\ $$$$\boldsymbol{\mathrm{at}}\:\boldsymbol{\mathrm{one}}\:\boldsymbol{\mathrm{end}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{major}}\:\boldsymbol{\mathrm{axis}}\:?\:? \\ $$
Question Number 75960 Answers: 1 Comments: 2
$${prove}\:{that}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({sinx}\right){dx}=−\frac{\pi}{\mathrm{2}}{ln}\mathrm{2} \\ $$
Question Number 75955 Answers: 2 Comments: 0
$${help}\:{me}\: \\ $$$$ \\ $$
Question Number 75954 Answers: 0 Comments: 2
$${prove}\:{that}\:\left({ann}\left({I}\right),+,.\right)\:{identical}\:{in}\:\left({R},+,.\right)? \\ $$
Question Number 75953 Answers: 0 Comments: 0
$${prove}\:{that}\:\left({C}\left({I}\right),+,.\right)\:{identical}\:{in}\:\left({R},+,.\right)? \\ $$
Question Number 75952 Answers: 0 Comments: 1
$${are}\:{this}\:\left({cent}\left({R}\right),+,.\right){identical}\:{in}\:{the}\:{ring}\:\left({R},+,.\right)\:? \\ $$$${pleas}\:{sir}\:{are}\:{you}\:{can}\:{help}\:{me}? \\ $$
Question Number 75951 Answers: 0 Comments: 0
$${give}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{x}^{\mathrm{2}} }{\mathrm{1}−{cosx}}{dx}\:\:{at}\:{form}\:{of} \\ $$$${serie}. \\ $$
Question Number 75950 Answers: 0 Comments: 2
$${give}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{x}}{{sinx}}{dx}\:\:{at}\:{form}\:{of}\:{serie}. \\ $$
Question Number 75940 Answers: 0 Comments: 0
$${Given}\:{that}\:{a}\in\mathbb{Z}\:{and}\:{k}\in\mathbb{Z}\:{and}\:\left[{a}+{x}\right]\:=\:{a}\:+\left[{x}\right]\:=\:{k} \\ $$$$\left.{a}\right)\:{show}\:{that}\:\:{k}−{a}\leqslant\:{x}\leqslant\:{k}−{a}\:+\mathrm{1} \\ $$$$\left.{b}\left.\right)\:{Deduce}\:{from}\:\left({a}\right)\right)\:{that}\:\left[{x}+{a}\right]\:=\:\left[{x}\right]\:+{a} \\ $$
Pg 1367 Pg 1368 Pg 1369 Pg 1370 Pg 1371 Pg 1372 Pg 1373 Pg 1374 Pg 1375 Pg 1376
Terms of Service
Privacy Policy
Contact: info@tinkutara.com