Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1372

Question Number 75953    Answers: 0   Comments: 0

prove that (C(I),+,.) identical in (R,+,.)?

$${prove}\:{that}\:\left({C}\left({I}\right),+,.\right)\:{identical}\:{in}\:\left({R},+,.\right)? \\ $$

Question Number 75952    Answers: 0   Comments: 1

are this (cent(R),+,.)identical in the ring (R,+,.) ? pleas sir are you can help me?

$${are}\:{this}\:\left({cent}\left({R}\right),+,.\right){identical}\:{in}\:{the}\:{ring}\:\left({R},+,.\right)\:? \\ $$$${pleas}\:{sir}\:{are}\:{you}\:{can}\:{help}\:{me}? \\ $$

Question Number 75951    Answers: 0   Comments: 0

give ∫_0 ^(π/2) (x^2 /(1−cosx))dx at form of serie.

$${give}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{x}^{\mathrm{2}} }{\mathrm{1}−{cosx}}{dx}\:\:{at}\:{form}\:{of} \\ $$$${serie}. \\ $$

Question Number 75950    Answers: 0   Comments: 2

give ∫_0 ^(π/2) (x/(sinx))dx at form of serie.

$${give}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{x}}{{sinx}}{dx}\:\:{at}\:{form}\:{of}\:{serie}. \\ $$

Question Number 75940    Answers: 0   Comments: 0

Given that a∈Z and k∈Z and [a+x] = a +[x] = k a) show that k−a≤ x≤ k−a +1 b) Deduce from (a)) that [x+a] = [x] +a

$${Given}\:{that}\:{a}\in\mathbb{Z}\:{and}\:{k}\in\mathbb{Z}\:{and}\:\left[{a}+{x}\right]\:=\:{a}\:+\left[{x}\right]\:=\:{k} \\ $$$$\left.{a}\right)\:{show}\:{that}\:\:{k}−{a}\leqslant\:{x}\leqslant\:{k}−{a}\:+\mathrm{1} \\ $$$$\left.{b}\left.\right)\:{Deduce}\:{from}\:\left({a}\right)\right)\:{that}\:\left[{x}+{a}\right]\:=\:\left[{x}\right]\:+{a} \\ $$

Question Number 75939    Answers: 0   Comments: 2

Question Number 75938    Answers: 0   Comments: 2

solve the inequality ln(x^2 −4e^2 )< 1 + ln3x

$${solve}\:{the}\:{inequality} \\ $$$$\:{ln}\left({x}^{\mathrm{2}} −\mathrm{4}{e}^{\mathrm{2}} \right)<\:\mathrm{1}\:+\:{ln}\mathrm{3}{x} \\ $$

Question Number 75937    Answers: 1   Comments: 0

find the set of values of x for which ((ln x + 2)/(lnx−2)) > ((1−lnx)/(1+lnx))

$${find}\:{the}\:{set}\:{of}\:{values}\:{of}\:{x}\:{for}\:{which}\: \\ $$$$\:\:\frac{{ln}\:{x}\:+\:\mathrm{2}}{{lnx}−\mathrm{2}}\:>\:\frac{\mathrm{1}−{lnx}}{\mathrm{1}+{lnx}} \\ $$

Question Number 75936    Answers: 0   Comments: 2

prove that if [((x + 1)/x)] = 0 then x ≤ −1

$${prove}\:{that}\:{if}\:\left[\frac{{x}\:+\:\mathrm{1}}{{x}}\right]\:=\:\mathrm{0}\:{then}\:{x}\:\leqslant\:−\mathrm{1} \\ $$

Question Number 75934    Answers: 0   Comments: 0

how do i sketch the curve y = x−[x] ,for 0≤x<6

$${how}\:{do}\:{i}\:{sketch}\:{the}\:{curve}\: \\ $$$${y}\:=\:{x}−\left[{x}\right]\:,{for}\:\mathrm{0}\leqslant{x}<\mathrm{6} \\ $$

Question Number 75933    Answers: 0   Comments: 2

solve the inequality a. ln(2x−e) >1 b. (lnx)^2 −lnx−6<0 c. ∣x∣ + ∣x+2∣ ≥ 2 d. ∣2x−5∣ + ∣x +2∣ > 7

$${solve}\:{the}\:{inequality} \\ $$$${a}.\:\:{ln}\left(\mathrm{2}{x}−{e}\right)\:>\mathrm{1} \\ $$$${b}.\:\left({lnx}\right)^{\mathrm{2}} −{lnx}−\mathrm{6}<\mathrm{0} \\ $$$${c}.\:\mid{x}\mid\:+\:\mid{x}+\mathrm{2}\mid\:\geqslant\:\mathrm{2} \\ $$$${d}.\:\mid\mathrm{2}{x}−\mathrm{5}\mid\:+\:\mid{x}\:+\mathrm{2}\mid\:>\:\mathrm{7} \\ $$

Question Number 75932    Answers: 1   Comments: 1

solve for x the following a. ∣x∣ + 3x −4 =0 b. ∣x∣−1 = 0 c. x^2 +3∣x∣ +2 =0

$${solve}\:{for}\:{x}\:{the}\:{following} \\ $$$${a}.\:\mid{x}\mid\:+\:\mathrm{3}{x}\:−\mathrm{4}\:=\mathrm{0} \\ $$$${b}.\:\:\mid{x}\mid−\mathrm{1}\:=\:\mathrm{0} \\ $$$${c}.\:{x}^{\mathrm{2}} +\mathrm{3}\mid{x}\mid\:+\mathrm{2}\:=\mathrm{0} \\ $$$$ \\ $$

Question Number 75931    Answers: 0   Comments: 4

Evaluate a. lim_(x→∞) (((x^2 +3)/(27x^2 −1)))^(1/3) b. lim_(x→−∞) ((x−2)/(√(x^2 +1))) c. lim_(x→∞) ((x^2 +2)/(2x−3)) d. lim_(x→∞) 2x + 1 − (√(4x^2 +5))

$${Evaluate} \\ $$$${a}.\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\sqrt[{\mathrm{3}}]{\frac{{x}^{\mathrm{2}} +\mathrm{3}}{\mathrm{27}{x}^{\mathrm{2}} −\mathrm{1}}} \\ $$$${b}.\:\:\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\frac{{x}−\mathrm{2}}{\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}} \\ $$$${c}.\underset{{x}\rightarrow\infty} {\:\mathrm{lim}}\frac{{x}^{\mathrm{2}} +\mathrm{2}}{\mathrm{2}{x}−\mathrm{3}} \\ $$$${d}.\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{2}{x}\:+\:\mathrm{1}\:−\:\sqrt{\mathrm{4}{x}^{\mathrm{2}} +\mathrm{5}} \\ $$

Question Number 75930    Answers: 0   Comments: 0

consider the function f(x) = { ((1+2x^2 , if x is rational)),((1 + x^4 , if x is irrational)) :} Use the sandwich(pinchin) theorem to prove that lim_(x→0) f(x) = 1.

$${consider}\:{the}\:{function} \\ $$$$\:{f}\left({x}\right)\:=\:\begin{cases}{\mathrm{1}+\mathrm{2}{x}^{\mathrm{2}} ,\:{if}\:{x}\:{is}\:{rational}}\\{\mathrm{1}\:+\:{x}^{\mathrm{4}} ,\:{if}\:{x}\:{is}\:{irrational}}\end{cases} \\ $$$${Use}\:{the}\:{sandwich}\left({pinchin}\right)\:{theorem}\:{to} \\ $$$${prove}\:{that}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:{f}\left({x}\right)\:=\:\mathrm{1}. \\ $$

Question Number 75929    Answers: 0   Comments: 2

Evaluate lim_(x→−∞) [(√(1−xe^x )) ]

$${Evaluate} \\ $$$$\underset{{x}\rightarrow−\infty} {\:\mathrm{lim}}\:\left[\sqrt{\mathrm{1}−{xe}^{{x}} }\:\right] \\ $$

Question Number 75925    Answers: 0   Comments: 0

Let OA^(→) = i+3j−2k and OB^(→) =3i+j−2k. The vector OC^(→) bisecting the ∠AOB and C being a point on the line AB is

$$\mathrm{Let}\:\overset{\rightarrow} {{OA}}=\:\boldsymbol{\mathrm{i}}+\mathrm{3}\boldsymbol{\mathrm{j}}−\mathrm{2}\boldsymbol{\mathrm{k}}\:\mathrm{and}\:\overset{\rightarrow} {{OB}}=\mathrm{3}\boldsymbol{\mathrm{i}}+\boldsymbol{\mathrm{j}}−\mathrm{2}\boldsymbol{\mathrm{k}}. \\ $$$$\mathrm{The}\:\mathrm{vector}\:\overset{\rightarrow} {{OC}}\:\mathrm{bisecting}\:\mathrm{the}\:\angle{AOB}\:\mathrm{and} \\ $$$${C}\:\:\mathrm{being}\:\mathrm{a}\:\mathrm{point}\:\mathrm{on}\:\mathrm{the}\:\mathrm{line}\:{AB}\:\mathrm{is} \\ $$

Question Number 75924    Answers: 0   Comments: 3

Thr value of ∫_(0 ) ^(π/2) cosec (x−(π/3))cosec (x−(π/6))dx is

$$\mathrm{Thr}\:\mathrm{value}\:\mathrm{of} \\ $$$$\:\underset{\mathrm{0}\:} {\overset{\pi/\mathrm{2}} {\int}}\mathrm{cosec}\:\left({x}−\frac{\pi}{\mathrm{3}}\right)\mathrm{cosec}\:\left({x}−\frac{\pi}{\mathrm{6}}\right){dx}\:\:\mathrm{is} \\ $$

Question Number 75921    Answers: 0   Comments: 1

Question Number 75916    Answers: 0   Comments: 1

x^3 +x^2 −24x+36=0 prove that x=2,3,−6.

$${x}^{\mathrm{3}} +{x}^{\mathrm{2}} −\mathrm{24}{x}+\mathrm{36}=\mathrm{0} \\ $$$${prove}\:{that}\:{x}=\mathrm{2},\mathrm{3},−\mathrm{6}. \\ $$

Question Number 75913    Answers: 0   Comments: 1

x^3 −7x+6=0 prove that x=2,−3,1 .

$${x}^{\mathrm{3}} −\mathrm{7}{x}+\mathrm{6}=\mathrm{0} \\ $$$${prove}\:{that}\:{x}=\mathrm{2},−\mathrm{3},\mathrm{1}\:. \\ $$

Question Number 75918    Answers: 1   Comments: 0

Question Number 75917    Answers: 0   Comments: 0

Question Number 75905    Answers: 0   Comments: 1

Question Number 75902    Answers: 1   Comments: 1

Question Number 75901    Answers: 1   Comments: 0

Question Number 75899    Answers: 0   Comments: 0

A group of 30 men participate in a survey of telecom companies. The number of men who use both Idea and Airtel internet was equal to the number of men who use neither of these inernets. The number of men who use Idea is 4 more than those who use Airtel. How many use Airtel internet.

$$\mathrm{A}\:\mathrm{group}\:\mathrm{of}\:\mathrm{30}\:\mathrm{men}\:\mathrm{participate}\:\mathrm{in}\:\mathrm{a}\: \\ $$$$\mathrm{survey}\:\mathrm{of}\:\mathrm{telecom}\:\mathrm{companies}.\:\mathrm{The} \\ $$$$\mathrm{number}\:\mathrm{of}\:\mathrm{men}\:\mathrm{who}\:\mathrm{use}\:\mathrm{both}\:\mathrm{Idea}\: \\ $$$$\mathrm{and}\:\mathrm{Airtel}\:\mathrm{internet}\:\mathrm{was}\:\mathrm{equal}\:\mathrm{to} \\ $$$$\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{men}\:\mathrm{who}\:\mathrm{use}\:\mathrm{neither} \\ $$$$\mathrm{of}\:\mathrm{these}\:\mathrm{inernets}.\:\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{men} \\ $$$$\mathrm{who}\:\mathrm{use}\:\mathrm{Idea}\:\mathrm{is}\:\mathrm{4}\:\mathrm{more}\:\mathrm{than}\:\mathrm{those} \\ $$$$\mathrm{who}\:\mathrm{use}\:\mathrm{Airtel}.\:\mathrm{How}\:\mathrm{many}\:\mathrm{use}\:\mathrm{Airtel} \\ $$$$\mathrm{internet}. \\ $$

  Pg 1367      Pg 1368      Pg 1369      Pg 1370      Pg 1371      Pg 1372      Pg 1373      Pg 1374      Pg 1375      Pg 1376   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com