Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1372

Question Number 74240    Answers: 1   Comments: 3

Question Number 74235    Answers: 3   Comments: 0

Question Number 74234    Answers: 0   Comments: 0

f(x)=(1/((4x^3 ))^(1/5) ) find f^ ′(x) with using lim_(h→0) ((f(x+h)−f(x))/h)

$${f}\left({x}\right)=\frac{\mathrm{1}}{\sqrt[{\mathrm{5}}]{\mathrm{4}{x}^{\mathrm{3}} }} \\ $$$$ \\ $$$${find}\:{f}^{\:} '\left({x}\right) \\ $$$$ \\ $$$${with}\:{using}\:\underset{{h}\rightarrow\mathrm{0}} {{lim}}\frac{{f}\left({x}+{h}\right)−{f}\left({x}\right)}{{h}} \\ $$

Question Number 74231    Answers: 1   Comments: 2

Question Number 74226    Answers: 0   Comments: 0

Question Number 74225    Answers: 1   Comments: 0

let p(x)=(1+jx)^n −(1−jx)^n with j=e^((i2π)/3) 1) determine the roots of p(x) and factorize P(x) inside C[x] 2) decompose the fraction F(x)=(1/(p(x)))

$${let}\:{p}\left({x}\right)=\left(\mathrm{1}+{jx}\right)^{{n}} −\left(\mathrm{1}−{jx}\right)^{{n}} \:\:{with}\:{j}={e}^{\frac{{i}\mathrm{2}\pi}{\mathrm{3}}} \\ $$$$\left.\mathrm{1}\right)\:{determine}\:{the}\:{roots}\:{of}\:{p}\left({x}\right)\:{and}\:{factorize}\:{P}\left({x}\right)\:{inside}\:{C}\left[{x}\right] \\ $$$$\left.\mathrm{2}\right)\:{decompose}\:{the}\:{fraction}\:{F}\left({x}\right)=\frac{\mathrm{1}}{{p}\left({x}\right)} \\ $$

Question Number 74224    Answers: 1   Comments: 2

find ∫ (x^2 +1)^(1/4) cos((1/2)arctan((1/x)))dx and ∫ (x^2 +1)^(1/4) sin((1/2)arctan((1/x)))dx

$${find}\:\int\:\:\:\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{4}}} \:{cos}\left(\frac{\mathrm{1}}{\mathrm{2}}{arctan}\left(\frac{\mathrm{1}}{{x}}\right)\right){dx}\:\:{and} \\ $$$$\int\:\:\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{4}}} {sin}\left(\frac{\mathrm{1}}{\mathrm{2}}{arctan}\left(\frac{\mathrm{1}}{{x}}\right)\right){dx} \\ $$

Question Number 74223    Answers: 1   Comments: 0

calculate f(a)=∫_0 ^1 (√(x^2 +ax+1))dx and g(a)=∫_0 ^1 ((xdx)/(√(x^2 +ax+1))) with ∣a∣<2 2)find the value of ∫_0 ^1 (√(x^2 +(√2)x+1))dx and ∫_0 ^1 ((xdx)/(√(x^2 +(√2)x+1)))

$${calculate}\:\:{f}\left({a}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{{x}^{\mathrm{2}} +{ax}+\mathrm{1}}{dx}\:\:\:{and}\:{g}\left({a}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{xdx}}{\sqrt{{x}^{\mathrm{2}} +{ax}+\mathrm{1}}} \\ $$$${with}\:\:\mid{a}\mid<\mathrm{2} \\ $$$$\left.\mathrm{2}\right){find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{{x}^{\mathrm{2}} +\sqrt{\mathrm{2}}{x}+\mathrm{1}}{dx}\:{and}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{xdx}}{\sqrt{{x}^{\mathrm{2}} +\sqrt{\mathrm{2}}{x}+\mathrm{1}}} \\ $$

Question Number 74219    Answers: 0   Comments: 0

Question Number 74218    Answers: 1   Comments: 0

verify that y(x)=e^x (cos e^x −e^x sin e^x ) is the solution of integral equation y(x)=(1−xe^(2x) )cos 1−e^(2x) sin 1+∫_0 ^x {1−(x−t)e^(2x) }y(t)dt

$${verify}\:{that}\:{y}\left({x}\right)={e}^{{x}} \left(\mathrm{cos}\:{e}^{{x}} −{e}^{{x}} \mathrm{sin}\:{e}^{{x}} \right)\:{is}\:{the}\:{solution}\:{of}\:{integral}\:{equation}\:{y}\left({x}\right)=\left(\mathrm{1}−{xe}^{\mathrm{2}{x}} \right)\mathrm{cos}\:\mathrm{1}−{e}^{\mathrm{2}{x}} \mathrm{sin}\:\mathrm{1}+\underset{\mathrm{0}} {\overset{{x}} {\int}}\left\{\mathrm{1}−\left({x}−{t}\right){e}^{\mathrm{2}{x}} \right\}{y}\left({t}\right){dt} \\ $$

Question Number 74214    Answers: 1   Comments: 0

Question Number 74213    Answers: 2   Comments: 1

Question Number 74211    Answers: 0   Comments: 1

Question Number 74210    Answers: 1   Comments: 0

∫e^t cos e^t dt

$$\int{e}^{{t}} \mathrm{cos}\:{e}^{{t}} {dt} \\ $$

Question Number 74209    Answers: 1   Comments: 0

Question Number 74207    Answers: 0   Comments: 0

Question Number 74196    Answers: 0   Comments: 1

solve for x: 4^x +6^x =9^x

$${solve}\:{for}\:{x}: \\ $$$$\mathrm{4}^{{x}} +\mathrm{6}^{{x}} =\mathrm{9}^{{x}} \\ $$

Question Number 74191    Answers: 2   Comments: 0

9Y4 +75X Z86 −−−− W387 find X+Y+Z+W.

$$\:\:\:\:\mathrm{9}{Y}\mathrm{4} \\ $$$$+\mathrm{75}{X} \\ $$$$\:\:\:\:{Z}\mathrm{86} \\ $$$$−−−− \\ $$$${W}\mathrm{387} \\ $$$${find}\:{X}+{Y}+{Z}+{W}. \\ $$

Question Number 74187    Answers: 0   Comments: 0

Question Number 74181    Answers: 1   Comments: 0

Question Number 74180    Answers: 0   Comments: 0

Question Number 74179    Answers: 0   Comments: 0

Question Number 74173    Answers: 1   Comments: 1

Question Number 74172    Answers: 0   Comments: 0

Question Number 74171    Answers: 0   Comments: 0

Question Number 74170    Answers: 0   Comments: 0

  Pg 1367      Pg 1368      Pg 1369      Pg 1370      Pg 1371      Pg 1372      Pg 1373      Pg 1374      Pg 1375      Pg 1376   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com