Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1372
Question Number 73144 Answers: 1 Comments: 1
$${calculte}\:\int\:\:\frac{{x}+\sqrt{\mathrm{2}+{x}^{\mathrm{2}} }}{{x}+\mathrm{1}−\sqrt{\mathrm{2}+{x}^{\mathrm{2}} }}{dx} \\ $$
Question Number 73137 Answers: 0 Comments: 8
Question Number 73131 Answers: 0 Comments: 2
$$\boldsymbol{\mathrm{solve}}\:\boldsymbol{\mathrm{for}}\:\boldsymbol{\mathrm{x}},\boldsymbol{\mathrm{in}}\:\boldsymbol{\mathrm{terms}}\:\boldsymbol{\mathrm{of}}:\:\:\boldsymbol{\mathrm{a}}\in\boldsymbol{\mathrm{R}}\:. \\ $$$$\:\:\:\boldsymbol{\mathrm{x}}+\sqrt{\boldsymbol{\mathrm{x}}}+\sqrt{\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\boldsymbol{\mathrm{a}}}+\sqrt{\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{a}}^{\mathrm{2}} }=\boldsymbol{\mathrm{a}}^{\mathrm{2}} \\ $$
Question Number 73117 Answers: 2 Comments: 1
Question Number 73111 Answers: 1 Comments: 0
Question Number 73113 Answers: 1 Comments: 3
Question Number 73090 Answers: 2 Comments: 1
Question Number 73211 Answers: 0 Comments: 0
$${y}=\left({c}+\mathrm{3}\right)\sqrt{{x}}\:+\frac{\mathrm{3}+{d}}{{x}}−\frac{{a}+\mathrm{4}}{{x}^{{a}+\mathrm{3}} } \\ $$
Question Number 73080 Answers: 1 Comments: 0
$$\mathrm{y}''=\mathrm{e}^{\mathrm{y}} \\ $$$$\mathrm{pls}\:\mathrm{solve} \\ $$
Question Number 73059 Answers: 1 Comments: 3
$${let}\:{P}_{{n}} \left({x}\right)=\left({x}+\mathrm{1}\right)^{{n}} −\left({x}−\mathrm{1}\right)^{{n}} \\ $$$$\left.\mathrm{1}\right)\:{fartorize}\:{inside}\:{C}\left({x}\right)\:{P}_{{n}} \left({x}\right) \\ $$$$\left.\mathrm{2}\right){calculate}\:\prod_{{k}=\mathrm{1}} ^{{p}} \:{cotan}\left(\frac{{k}\pi}{\mathrm{2}{p}+\mathrm{1}}\right) \\ $$
Question Number 73057 Answers: 1 Comments: 0
$${let}\:{P}_{{n}} =\left({x}+\mathrm{1}\right)^{\mathrm{2}{n}+\mathrm{1}} −{x}^{\mathrm{2}{n}+\mathrm{1}} −\mathrm{1} \\ $$$${prove}\:{that}\:{x}^{\mathrm{2}} \:+{x}\:{divide}\:\underset{{n}} {{P}} \\ $$
Question Number 73056 Answers: 0 Comments: 1
$${if}\:\left({xsina}+{cosa}\right)^{{n}} ={q}\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)+{r}\:{find}\:{r} \\ $$
Question Number 73055 Answers: 0 Comments: 0
$${decompose}\:{inside}\:{R}\left({x}\right)\:{the}\:{fraction}\:\:\frac{{x}^{\mathrm{4}} \:+{x}+\mathrm{1}}{{x}\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{3}} } \\ $$
Question Number 73052 Answers: 1 Comments: 0
$${let}\:{P}_{{n}} ={X}^{{n}} \:+{X}^{{n}−\mathrm{1}} \:+....+{X}^{\mathrm{2}} \:+{X}−\mathrm{1}\:\in{R}\left[{X}\right] \\ $$$$\left.\mathrm{1}\left.\right){prove}\:{that}\:{P}_{{n}} {have}\:{one}\:{root}\:{x}_{{n}} \:{inside}\:\right]\mathrm{0},+\infty\left[\right. \\ $$$$\left.\mathrm{2}\right){study}\:{the}\:{sequence}\:{x}_{{n}} \\ $$
Question Number 73051 Answers: 0 Comments: 1
$${factorize}\:{inside}\:{R}\left[{X}\right] \\ $$$$\left.\mathrm{1}\right){X}^{\mathrm{5}} −\mathrm{1}\:\: \\ $$$$\left.\mathrm{2}\right){X}^{\mathrm{6}} \:+\mathrm{1} \\ $$
Question Number 73049 Answers: 0 Comments: 0
$${simplifyA}_{{n}} =\:\sum_{{k}=\mathrm{0}} ^{{n}} \left(\frac{{k}}{{n}}−\alpha\right)^{\mathrm{2}} \:{C}_{{n}} ^{{k}} \:{X}^{{k}} \left(\mathrm{1}−{X}\right)^{{n}−{k}} \\ $$
Question Number 73048 Answers: 0 Comments: 0
$${solve}\:{inside}\:{Z}^{\mathrm{2}} \:\:{x}^{\mathrm{2}} \:+\mathrm{3}{xy}−\mathrm{2}{y}^{\mathrm{2}} \:=\mathrm{122} \\ $$
Question Number 73047 Answers: 1 Comments: 0
$${solve}\:{inside}\:{Z}^{\mathrm{3}} \:\:\:\:\:{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:+{z}^{\mathrm{2}\:} =\mathrm{2}{xyz} \\ $$
Question Number 73046 Answers: 1 Comments: 0
$${prove}\:{that}\:\forall{n}\:\in{N}\:\:\:\:\sum_{{k}=\mathrm{0}} ^{{n}} \:{k}\:{C}_{\mathrm{2}{n}} ^{{n}+{k}} \:={nC}_{\mathrm{2}{n}−\mathrm{1}} ^{{n}} \\ $$
Question Number 73045 Answers: 0 Comments: 0
$${calculate}\:\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\frac{{C}_{{n}} ^{{k}} }{{C}_{\mathrm{2}{n}−\mathrm{1}} ^{{k}} } \\ $$
Question Number 73044 Answers: 0 Comments: 0
$${prove}\:{that}\:\:\sum_{{k}=\mathrm{1}} ^{{n}} \:{H}_{{k}} =\left({n}+\mathrm{1}\right){H}_{{n}} −{n} \\ $$$${and}\:\sum_{{k}=\mathrm{1}} ^{{n}} \:{H}_{{k}} ^{\mathrm{2}} \:=\left({n}+\mathrm{1}\right){H}_{{n}} ^{\mathrm{2}} \:−\left(\mathrm{2}{n}+\mathrm{1}\right){H}_{{n}} \:+\mathrm{2}{n} \\ $$
Question Number 73043 Answers: 1 Comments: 2
$${prove}\:{that}\:{H}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\left(−\mathrm{1}\right)^{{k}+\mathrm{1}} }{{k}}×{C}_{{n}} ^{{k}} \\ $$$${H}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}} \\ $$
Question Number 73042 Answers: 1 Comments: 0
$${prove}\:{that}\:{for}\:\left({n},{p}\right)\in{N}^{\bigstar^{\mathrm{2}} } \:\:\:\sum_{{k}=\mathrm{0}} ^{{p}\:} \:{k}\:{C}_{{n}} ^{{p}−{k}} \:{C}_{{n}} ^{{k}} \:={n}\:{C}_{\mathrm{2}{n}−\mathrm{1}} ^{{p}−\mathrm{1}} \\ $$$${conclude}\:{the}\:{value}\:{of}\:\sum_{{k}=\mathrm{0}} ^{{n}} \:{k}\:\left({C}_{{n}} ^{{k}} \right)^{\mathrm{2}} \\ $$
Question Number 73041 Answers: 1 Comments: 1
$${prove}\:{that}\:\forall{n}\in\:{N}\:\:\sum_{{k}=\mathrm{0}} ^{\mathrm{2}{n}} \:\left(−\mathrm{1}\right)^{{k}} \:\left({C}_{\mathrm{2}{n}} ^{{k}} \right)^{\mathrm{2}} \:=\left(−\mathrm{1}\right)^{{n}} \:{C}_{\mathrm{2}{n}} ^{{n}} \\ $$
Question Number 73040 Answers: 1 Comments: 0
$${prove}\:{that}\:\:\forall\left({n},{p}\right)\in{N}^{\bigstar} ×{N} \\ $$$$\left.\mathrm{1}\right)\sum_{{k}=\mathrm{0}} ^{{p}} \:\left(−\mathrm{1}\right)^{{k}} \:{C}_{{n}} ^{{k}} \:=\left(−\mathrm{1}\right)^{{p}} \:{C}_{{n}−\mathrm{1}} ^{{p}} \\ $$$$\left.\mathrm{2}\right)\forall\left({p},{q}\right)\in{N}^{\mathrm{2}} \:\:\:\:\sum_{{k}=\mathrm{0}} ^{{p}} \:{C}_{{p}+{q}} ^{{k}} \:{C}_{{p}+{q}−{k}} ^{{p}−{k}} \:\:=\mathrm{2}^{{p}} \:{C}_{{p}+{q}} ^{{p}} \\ $$
Question Number 73039 Answers: 1 Comments: 0
$${let}\:{U}_{{n}} =\frac{{n}}{\mathrm{2}}\:{if}\:{n}\:{even}\:{and}\:{U}_{{n}} =\frac{{n}−\mathrm{1}}{\mathrm{2}}\:{if}\:{n}\:{odd}\:{let}\:{f}\left({n}\right)=\sum_{{k}=\mathrm{0}} ^{{n}} {U}_{{k}} \\ $$$${prove}\:{that}\:\forall\left({x},{y}\right)\in{N}^{\mathrm{2}} \:\:\:\:{f}\left({x}+{y}\right)−{f}\left({x}−{y}\right)={xy} \\ $$
Pg 1367 Pg 1368 Pg 1369 Pg 1370 Pg 1371 Pg 1372 Pg 1373 Pg 1374 Pg 1375 Pg 1376
Terms of Service
Privacy Policy
Contact: info@tinkutara.com