Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1371

Question Number 64975    Answers: 0   Comments: 1

Question Number 64973    Answers: 1   Comments: 0

Question Number 64971    Answers: 0   Comments: 3

Question Number 64970    Answers: 0   Comments: 9

let f(a)=∫_0 ^∞ ((cos(x^2 ) +sin(x^2 ))/((x^2 +a^2 )^2 )) dx with a>0 1) calculate f(a) 2) find the values of ∫_0 ^∞ ((cos(x^2 )+sin(x^2 ))/((x^2 +1)^2 ))dx and ∫_0 ^∞ ((cos(x^2 )+sin(x^2 ))/((x^2 +3)^2 ))dx

$${let}\:{f}\left({a}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left({x}^{\mathrm{2}} \right)\:+{sin}\left({x}^{\mathrm{2}} \right)}{\left({x}^{\mathrm{2}} \:+{a}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{dx}\:\:\:{with}\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}\left({a}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{values}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left({x}^{\mathrm{2}} \right)+{sin}\left({x}^{\mathrm{2}} \right)}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }{dx}\:{and} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\frac{{cos}\left({x}^{\mathrm{2}} \right)+{sin}\left({x}^{\mathrm{2}} \right)}{\left({x}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{2}} }{dx} \\ $$

Question Number 64968    Answers: 0   Comments: 1

Question Number 64966    Answers: 0   Comments: 0

Question Number 64955    Answers: 0   Comments: 3

prove that Σ_(k=1) ^n k∙(((k+1)!)/2^(k+1) )=(((n+2)!)/2^(n+1) )−1

$${prove}\:{that}\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}\centerdot\frac{\left({k}+\mathrm{1}\right)!}{\mathrm{2}^{{k}+\mathrm{1}} }=\frac{\left({n}+\mathrm{2}\right)!}{\mathrm{2}^{{n}+\mathrm{1}} }−\mathrm{1} \\ $$

Question Number 64951    Answers: 1   Comments: 0

Question Number 64949    Answers: 1   Comments: 1

Question Number 64941    Answers: 0   Comments: 0

$$ \\ $$

Question Number 64916    Answers: 1   Comments: 6

Question Number 64909    Answers: 1   Comments: 2

Question Number 64905    Answers: 0   Comments: 0

∫log (tan x)dx

$$\int\mathrm{log}\:\left(\mathrm{tan}\:\mathrm{x}\right)\mathrm{dx} \\ $$

Question Number 64904    Answers: 0   Comments: 2

calculate ∫_1 ^2 ∫_0 ^x (1/((x^2 +y^2 )^(3/2) ))dydx

$${calculate}\:\int_{\mathrm{1}} ^{\mathrm{2}} \:\int_{\mathrm{0}} ^{{x}} \:\:\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} }{dydx}\: \\ $$

Question Number 64903    Answers: 1   Comments: 2

1, 3, 7, 15, 30, 57, 103, x What′s x ?

$$\mathrm{1},\:\mathrm{3},\:\mathrm{7},\:\mathrm{15},\:\mathrm{30},\:\mathrm{57},\:\mathrm{103},\:{x} \\ $$$${What}'{s}\:\:{x}\:? \\ $$

Question Number 64901    Answers: 1   Comments: 11

Question Number 64895    Answers: 0   Comments: 0

Question Number 64894    Answers: 0   Comments: 0

Question Number 64893    Answers: 0   Comments: 0

Question Number 64892    Answers: 0   Comments: 0

Question Number 64887    Answers: 1   Comments: 0

Question Number 64886    Answers: 0   Comments: 0

let f(x) =cos((1/x)) 1) calculate f^((n)) (x) 2) developp f at integr serie at x_0 =(3/π)

$${let}\:{f}\left({x}\right)\:={cos}\left(\frac{\mathrm{1}}{{x}}\right)\:\:\: \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{\left({n}\right)} \left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie}\:{at}\:{x}_{\mathrm{0}} =\frac{\mathrm{3}}{\pi} \\ $$

Question Number 64867    Answers: 1   Comments: 0

x^4 +(2i−3)x^3 −(1+6i)x^2 +(3−2i)x−2=0

$${x}^{\mathrm{4}} +\left(\mathrm{2}{i}−\mathrm{3}\right){x}^{\mathrm{3}} −\left(\mathrm{1}+\mathrm{6}{i}\right){x}^{\mathrm{2}} +\left(\mathrm{3}−\mathrm{2}{i}\right){x}−\mathrm{2}=\mathrm{0} \\ $$

Question Number 64866    Answers: 0   Comments: 3

find ∫_1 ^(+∞) (dx/(x^2 (√(1+x+x^2 ))))

$${find}\:\int_{\mathrm{1}} ^{+\infty} \:\frac{{dx}}{{x}^{\mathrm{2}} \sqrt{\mathrm{1}+{x}+{x}^{\mathrm{2}} }} \\ $$

Question Number 64860    Answers: 0   Comments: 6

Question Number 64857    Answers: 0   Comments: 3

  Pg 1366      Pg 1367      Pg 1368      Pg 1369      Pg 1370      Pg 1371      Pg 1372      Pg 1373      Pg 1374      Pg 1375   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com