Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1371
Question Number 64975 Answers: 0 Comments: 1
Question Number 64973 Answers: 1 Comments: 0
Question Number 64971 Answers: 0 Comments: 3
Question Number 64970 Answers: 0 Comments: 9
$${let}\:{f}\left({a}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left({x}^{\mathrm{2}} \right)\:+{sin}\left({x}^{\mathrm{2}} \right)}{\left({x}^{\mathrm{2}} \:+{a}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{dx}\:\:\:{with}\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}\left({a}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{values}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left({x}^{\mathrm{2}} \right)+{sin}\left({x}^{\mathrm{2}} \right)}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }{dx}\:{and} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\frac{{cos}\left({x}^{\mathrm{2}} \right)+{sin}\left({x}^{\mathrm{2}} \right)}{\left({x}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{2}} }{dx} \\ $$
Question Number 64968 Answers: 0 Comments: 1
Question Number 64966 Answers: 0 Comments: 0
Question Number 64955 Answers: 0 Comments: 3
$${prove}\:{that}\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}\centerdot\frac{\left({k}+\mathrm{1}\right)!}{\mathrm{2}^{{k}+\mathrm{1}} }=\frac{\left({n}+\mathrm{2}\right)!}{\mathrm{2}^{{n}+\mathrm{1}} }−\mathrm{1} \\ $$
Question Number 64951 Answers: 1 Comments: 0
Question Number 64949 Answers: 1 Comments: 1
Question Number 64941 Answers: 0 Comments: 0
$$ \\ $$
Question Number 64916 Answers: 1 Comments: 6
Question Number 64909 Answers: 1 Comments: 2
Question Number 64905 Answers: 0 Comments: 0
$$\int\mathrm{log}\:\left(\mathrm{tan}\:\mathrm{x}\right)\mathrm{dx} \\ $$
Question Number 64904 Answers: 0 Comments: 2
$${calculate}\:\int_{\mathrm{1}} ^{\mathrm{2}} \:\int_{\mathrm{0}} ^{{x}} \:\:\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} }{dydx}\: \\ $$
Question Number 64903 Answers: 1 Comments: 2
$$\mathrm{1},\:\mathrm{3},\:\mathrm{7},\:\mathrm{15},\:\mathrm{30},\:\mathrm{57},\:\mathrm{103},\:{x} \\ $$$${What}'{s}\:\:{x}\:? \\ $$
Question Number 64901 Answers: 1 Comments: 11
Question Number 64895 Answers: 0 Comments: 0
Question Number 64894 Answers: 0 Comments: 0
Question Number 64893 Answers: 0 Comments: 0
Question Number 64892 Answers: 0 Comments: 0
Question Number 64887 Answers: 1 Comments: 0
Question Number 64886 Answers: 0 Comments: 0
$${let}\:{f}\left({x}\right)\:={cos}\left(\frac{\mathrm{1}}{{x}}\right)\:\:\: \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{\left({n}\right)} \left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie}\:{at}\:{x}_{\mathrm{0}} =\frac{\mathrm{3}}{\pi} \\ $$
Question Number 64867 Answers: 1 Comments: 0
$${x}^{\mathrm{4}} +\left(\mathrm{2}{i}−\mathrm{3}\right){x}^{\mathrm{3}} −\left(\mathrm{1}+\mathrm{6}{i}\right){x}^{\mathrm{2}} +\left(\mathrm{3}−\mathrm{2}{i}\right){x}−\mathrm{2}=\mathrm{0} \\ $$
Question Number 64866 Answers: 0 Comments: 3
$${find}\:\int_{\mathrm{1}} ^{+\infty} \:\frac{{dx}}{{x}^{\mathrm{2}} \sqrt{\mathrm{1}+{x}+{x}^{\mathrm{2}} }} \\ $$
Question Number 64860 Answers: 0 Comments: 6
Question Number 64857 Answers: 0 Comments: 3
Pg 1366 Pg 1367 Pg 1368 Pg 1369 Pg 1370 Pg 1371 Pg 1372 Pg 1373 Pg 1374 Pg 1375
Terms of Service
Privacy Policy
Contact: info@tinkutara.com