Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1370

Question Number 74423    Answers: 0   Comments: 1

Question Number 74419    Answers: 0   Comments: 1

Question Number 74418    Answers: 1   Comments: 0

Question Number 74415    Answers: 1   Comments: 1

Question Number 74412    Answers: 0   Comments: 0

a,b,c are given real constants. p,q,r,t are unknowns from which we can choose values of two of them (non zero) and have to determine the other two (non zero), obeying two equations given below p^2 +q(1+bq)t^2 +q(ap+br)t +r(1+bq)t+r(ap+br) = 0 pt+q(a+cq)t^2 +r(a+cq)t +cqrt+cr^2 = 0 Can this be done solving a quadratic eq. and none higher..?

$${a},{b},{c}\:{are}\:{given}\:{real}\:{constants}. \\ $$$${p},{q},{r},{t}\:{are}\:{unknowns}\:{from}\:{which} \\ $$$${we}\:{can}\:{choose}\:{values}\:{of}\:{two}\:{of} \\ $$$${them}\:\left({non}\:{zero}\right)\:{and}\:{have}\:{to}\: \\ $$$${determine}\:{the}\:{other}\:{two}\:\left({non}\:{zero}\right), \\ $$$${obeying}\:\:{two}\:{equations}\:{given}\:{below} \\ $$$$\:{p}^{\mathrm{2}} +{q}\left(\mathrm{1}+{bq}\right){t}^{\mathrm{2}} +{q}\left({ap}+{br}\right){t} \\ $$$$\:\:\:\:\:+{r}\left(\mathrm{1}+{bq}\right){t}+{r}\left({ap}+{br}\right)\:=\:\mathrm{0} \\ $$$${pt}+{q}\left({a}+{cq}\right){t}^{\mathrm{2}} +{r}\left({a}+{cq}\right){t} \\ $$$$\:\:\:\:+{cqrt}+{cr}^{\mathrm{2}} =\:\mathrm{0} \\ $$$${Can}\:{this}\:{be}\:{done}\:{solving}\:{a} \\ $$$${quadratic}\:{eq}.\:{and}\:{none}\:{higher}..? \\ $$

Question Number 74411    Answers: 1   Comments: 0

A rocket vertically from the surface of the earth with an initil velocity(v_o ) show that its velocity v at height h is given by v_o ^2 −v^2 =((2gh)/(1+(h/R))) where R is radius of earth and g is the acceleration due to gravity at the earth surface

$${A}\:{rocket}\:{vertically}\:{from} \\ $$$${the}\:{surface}\:{of}\:{the}\:{earth} \\ $$$${with}\:{an}\:{initil}\:{velocity}\left({v}_{{o}} \right) \\ $$$${show}\:{that}\:{its}\:{velocity}\:{v} \\ $$$${at}\:{height}\:{h}\:{is}\:{given}\:{by} \\ $$$${v}_{{o}} ^{\mathrm{2}} −{v}^{\mathrm{2}} =\frac{\mathrm{2}{gh}}{\mathrm{1}+\frac{{h}}{{R}}} \\ $$$${where}\:{R}\:{is}\:{radius}\:{of}\:{earth} \\ $$$${and}\:\:{g}\:{is}\:{the}\:{acceleration} \\ $$$${due}\:{to}\:{gravity}\:{at}\:{the}\:{earth} \\ $$$${surface} \\ $$

Question Number 75089    Answers: 0   Comments: 4

∫sin (x^3 +c) dx=? ∫sinh (x^3 +c) dx=?

$$\int\mathrm{sin}\:\left({x}^{\mathrm{3}} +{c}\right)\:{dx}=? \\ $$$$\int\mathrm{sinh}\:\left({x}^{\mathrm{3}} +{c}\right)\:{dx}=? \\ $$

Question Number 74509    Answers: 0   Comments: 4

Question Number 74386    Answers: 0   Comments: 0

z(x)=u(x)+v(x)=Z(K)=U(K)+V(K) f u(x)=Σ(1/(k!)) (d^ k/(dx^ k))(x−xo)

$$\mathrm{z}\left(\mathrm{x}\right)=\mathrm{u}\left(\mathrm{x}\right)+\mathrm{v}\left(\mathrm{x}\right)=\mathrm{Z}\left(\mathrm{K}\right)=\mathrm{U}\left(\mathrm{K}\right)+\mathrm{V}\left(\mathrm{K}\right) \\ $$$$\mathrm{f}\:\mathrm{u}\left(\mathrm{x}\right)=\Sigma\frac{\mathrm{1}}{\mathrm{k}!}\:\frac{\hat {\mathrm{d}k}}{\mathrm{d}\hat {\mathrm{x}k}}\left(\mathrm{x}−\mathrm{x}{o}\right) \\ $$

Question Number 74384    Answers: 1   Comments: 1

Question Number 74383    Answers: 0   Comments: 3

Question Number 74369    Answers: 0   Comments: 0

please state Cramer′s rule

$${please}\:{state}\:{Cramer}'{s}\:{rule} \\ $$

Question Number 74394    Answers: 1   Comments: 4

Question Number 74367    Answers: 0   Comments: 2

Solve : (D^4 +4)y=0 given: y(0)=0 , y′(0)=2 , y′′(0)=0 and y′′′(0)=4.

$${Solve}\:: \\ $$$$\left({D}^{\mathrm{4}} +\mathrm{4}\right){y}=\mathrm{0}\: \\ $$$${given}:\:{y}\left(\mathrm{0}\right)=\mathrm{0}\:,\:{y}'\left(\mathrm{0}\right)=\mathrm{2}\:,\:{y}''\left(\mathrm{0}\right)=\mathrm{0}\:{and} \\ $$$${y}'''\left(\mathrm{0}\right)=\mathrm{4}. \\ $$

Question Number 74355    Answers: 1   Comments: 0

let f(x), g(x) and h(x) be functions R→R, given by f(x)=x^2 , if x≥0 and x+1 if x<0 g(x)=x^2 −4, if x≥2 and (1/(2−x)) if x<2 h(x)=3^(−x) , if x≤0 and 3^x if x≥0 Calculate ((f(2)+f(g(2)))/(f(g(h(−1))))).

$${let}\:{f}\left({x}\right),\:{g}\left({x}\right)\:{and}\:{h}\left({x}\right)\:{be}\:{functions} \\ $$$$\mathbb{R}\rightarrow\mathbb{R},\:{given}\:{by} \\ $$$${f}\left({x}\right)={x}^{\mathrm{2}} ,\:{if}\:{x}\geqslant\mathrm{0}\:{and}\:{x}+\mathrm{1}\:{if}\:{x}<\mathrm{0} \\ $$$${g}\left({x}\right)={x}^{\mathrm{2}} −\mathrm{4},\:{if}\:{x}\geqslant\mathrm{2}\:{and}\:\frac{\mathrm{1}}{\mathrm{2}−{x}}\:{if}\:{x}<\mathrm{2} \\ $$$${h}\left({x}\right)=\mathrm{3}^{−{x}} ,\:{if}\:{x}\leqslant\mathrm{0}\:{and}\:\mathrm{3}^{{x}} \:{if}\:{x}\geqslant\mathrm{0} \\ $$$${Calculate}\:\frac{{f}\left(\mathrm{2}\right)+{f}\left({g}\left(\mathrm{2}\right)\right)}{{f}\left({g}\left({h}\left(−\mathrm{1}\right)\right)\right)}. \\ $$

Question Number 74395    Answers: 0   Comments: 2

calculate ∫_0 ^∞ e^(−2x) [e^x ]dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:{e}^{−\mathrm{2}{x}} \left[{e}^{{x}} \right]{dx} \\ $$

Question Number 74353    Answers: 0   Comments: 0

let A_n =Σ_(k=0) ^n (1/(k+(√(k^2 +1)))) 1)find lim_(n→+∞) A_n 2) determine a equivalent of A_n when n→+∞

$${let}\:\:{A}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}} \:\:\frac{\mathrm{1}}{{k}+\sqrt{{k}^{\mathrm{2}} +\mathrm{1}}} \\ $$$$\left.\mathrm{1}\right){find}\:{lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{determine}\:{a}\:{equivalent}\:{of}\:{A}_{{n}} \:\:{when}\:{n}\rightarrow+\infty \\ $$$$ \\ $$

Question Number 74352    Answers: 1   Comments: 0

let U_n =Σ_(k=0) ^n (1/(k^2 +k+1)) find a equivalent of U_n (n→+∞)

$${let}\:{U}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}} \:\:\:\frac{\mathrm{1}}{{k}^{\mathrm{2}} +{k}+\mathrm{1}}\:\:{find}\:{a}\:{equivalent}\:{of}\:{U}_{{n}} \:\:\:\left({n}\rightarrow+\infty\right) \\ $$$$ \\ $$

Question Number 74351    Answers: 0   Comments: 1

find the value of Σ_(n=1) ^(+∞) (((−1)^n )/((4n^2 −1)^2 ))

$${find}\:{the}\:{value}\:{of}\:\:\sum_{{n}=\mathrm{1}} ^{+\infty} \:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{4}{n}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} } \\ $$

Question Number 74350    Answers: 0   Comments: 1

findf(a)= ∫_(−∞) ^(+∞) ((arctan(cosx))/(x^2 +a^2 ))dx witha>0

$${findf}\left({a}\right)=\:\int_{−\infty} ^{+\infty} \:\frac{{arctan}\left({cosx}\right)}{{x}^{\mathrm{2}} +{a}^{\mathrm{2}} }{dx}\:{witha}>\mathrm{0} \\ $$

Question Number 74349    Answers: 0   Comments: 2

calculate ∫_0 ^∞ ((cos(2πx))/((x^2 +3)^2 ))dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{cos}\left(\mathrm{2}\pi{x}\right)}{\left({x}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{2}} }{dx} \\ $$

Question Number 74348    Answers: 0   Comments: 1

calculate ∫_0 ^∞ ((arctan(sin(x^2 )))/(x^2 +1))dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{arctan}\left({sin}\left({x}^{\mathrm{2}} \right)\right)}{{x}^{\mathrm{2}} +\mathrm{1}}{dx} \\ $$

Question Number 74347    Answers: 0   Comments: 0

calculate ∫_0 ^∞ ((arctan(cos(πx^2 )))/(x^2 +1))dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{arctan}\left({cos}\left(\pi{x}^{\mathrm{2}} \right)\right)}{{x}^{\mathrm{2}} +\mathrm{1}}{dx} \\ $$

Question Number 74346    Answers: 1   Comments: 0

find ∫ ((x+(√(x+1)))/(2(√(x−1))+3))dx

$${find}\:\int\:\:\frac{{x}+\sqrt{{x}+\mathrm{1}}}{\mathrm{2}\sqrt{{x}−\mathrm{1}}+\mathrm{3}}{dx} \\ $$

Question Number 74345    Answers: 0   Comments: 2

1) calculate f(x)=∫_(x+1) ^(x^2 +1) e^(−xt) arctan(t)dt 2) find lim_(x→0) f(x)

$$\left.\mathrm{1}\right)\:{calculate}\:{f}\left({x}\right)=\int_{{x}+\mathrm{1}} ^{{x}^{\mathrm{2}} +\mathrm{1}} \:\:\:{e}^{−{xt}} {arctan}\left({t}\right){dt} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:{f}\left({x}\right) \\ $$

Question Number 74344    Answers: 1   Comments: 1

calculate ∫ ((x^2 −x+3)/(x^3 (x+2)^2 ))dx

$${calculate}\:\int\:\:\:\:\:\frac{{x}^{\mathrm{2}} −{x}+\mathrm{3}}{{x}^{\mathrm{3}} \left({x}+\mathrm{2}\right)^{\mathrm{2}} }{dx} \\ $$

  Pg 1365      Pg 1366      Pg 1367      Pg 1368      Pg 1369      Pg 1370      Pg 1371      Pg 1372      Pg 1373      Pg 1374   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com