Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1369

Question Number 76003    Answers: 1   Comments: 0

22+2

$$\mathrm{22}+\mathrm{2} \\ $$

Question Number 75991    Answers: 1   Comments: 1

Question Number 75990    Answers: 0   Comments: 0

Question Number 75989    Answers: 0   Comments: 0

Question Number 75988    Answers: 0   Comments: 3

Question Number 75987    Answers: 1   Comments: 0

Question Number 75986    Answers: 1   Comments: 1

Question Number 75985    Answers: 1   Comments: 0

Question Number 75984    Answers: 1   Comments: 0

Question Number 75983    Answers: 0   Comments: 2

show that cos^6 x+sin^6 x=(1/8)(5+3cos4x)

$$\mathrm{show}\:\mathrm{that} \\ $$$$\mathrm{cos}^{\mathrm{6}} \mathrm{x}+\mathrm{sin}^{\mathrm{6}} \mathrm{x}=\frac{\mathrm{1}}{\mathrm{8}}\left(\mathrm{5}+\mathrm{3cos4x}\right) \\ $$

Question Number 75976    Answers: 0   Comments: 3

hello solve it in ]−π;π] and place solutions in trigonometric circle. cos^6 x+sin^6 x=(3/8)((√3)sin4x+(8/3)) please help me...

$$\left.\mathrm{h}\left.\mathrm{ello}\:\:\mathrm{solve}\:\mathrm{it}\:\mathrm{in}\:\right]−\pi;\pi\right]\:\mathrm{and}\:\mathrm{place}\:\mathrm{solutions} \\ $$$$\mathrm{in}\:\mathrm{trigonometric}\:\mathrm{circle}. \\ $$$$\mathrm{cos}^{\mathrm{6}} \mathrm{x}+\mathrm{sin}^{\mathrm{6}} \mathrm{x}=\frac{\mathrm{3}}{\mathrm{8}}\left(\sqrt{\mathrm{3}}\mathrm{sin4x}+\frac{\mathrm{8}}{\mathrm{3}}\right) \\ $$$$\mathrm{please}\:\mathrm{help}\:\mathrm{me}... \\ $$

Question Number 76077    Answers: 2   Comments: 3

Find the maximum area of an isosceles triangle inscribed in an ellipse (x^2 /a^2 ) + (y^2 /b^2 ) = 1with its vetrex at one end of the major axis ? ?

$$\boldsymbol{\mathrm{Find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{maximum}}\:\boldsymbol{\mathrm{area}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{an}}\:\boldsymbol{\mathrm{isosceles}}\:\boldsymbol{\mathrm{triangle}} \\ $$$$\boldsymbol{\mathrm{inscribed}}\:\boldsymbol{\mathrm{in}}\:\boldsymbol{\mathrm{an}}\:\boldsymbol{\mathrm{ellipse}}\:\frac{\boldsymbol{{x}}^{\mathrm{2}} }{\boldsymbol{{a}}^{\mathrm{2}} }\:+\:\frac{\boldsymbol{{y}}^{\mathrm{2}} }{\boldsymbol{{b}}^{\mathrm{2}} }\:=\:\mathrm{1}\boldsymbol{\mathrm{with}}\:\boldsymbol{\mathrm{its}}\:\boldsymbol{\mathrm{vetrex}}\: \\ $$$$\boldsymbol{\mathrm{at}}\:\boldsymbol{\mathrm{one}}\:\boldsymbol{\mathrm{end}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{major}}\:\boldsymbol{\mathrm{axis}}\:?\:? \\ $$

Question Number 75960    Answers: 1   Comments: 2

prove that ∫_0 ^(π/2) ln(sinx)dx=−(π/2)ln2

$${prove}\:{that}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({sinx}\right){dx}=−\frac{\pi}{\mathrm{2}}{ln}\mathrm{2} \\ $$

Question Number 75955    Answers: 2   Comments: 0

help me

$${help}\:{me}\: \\ $$$$ \\ $$

Question Number 75954    Answers: 0   Comments: 2

prove that (ann(I),+,.) identical in (R,+,.)?

$${prove}\:{that}\:\left({ann}\left({I}\right),+,.\right)\:{identical}\:{in}\:\left({R},+,.\right)? \\ $$

Question Number 75953    Answers: 0   Comments: 0

prove that (C(I),+,.) identical in (R,+,.)?

$${prove}\:{that}\:\left({C}\left({I}\right),+,.\right)\:{identical}\:{in}\:\left({R},+,.\right)? \\ $$

Question Number 75952    Answers: 0   Comments: 1

are this (cent(R),+,.)identical in the ring (R,+,.) ? pleas sir are you can help me?

$${are}\:{this}\:\left({cent}\left({R}\right),+,.\right){identical}\:{in}\:{the}\:{ring}\:\left({R},+,.\right)\:? \\ $$$${pleas}\:{sir}\:{are}\:{you}\:{can}\:{help}\:{me}? \\ $$

Question Number 75951    Answers: 0   Comments: 0

give ∫_0 ^(π/2) (x^2 /(1−cosx))dx at form of serie.

$${give}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{x}^{\mathrm{2}} }{\mathrm{1}−{cosx}}{dx}\:\:{at}\:{form}\:{of} \\ $$$${serie}. \\ $$

Question Number 75950    Answers: 0   Comments: 2

give ∫_0 ^(π/2) (x/(sinx))dx at form of serie.

$${give}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{x}}{{sinx}}{dx}\:\:{at}\:{form}\:{of}\:{serie}. \\ $$

Question Number 75940    Answers: 0   Comments: 0

Given that a∈Z and k∈Z and [a+x] = a +[x] = k a) show that k−a≤ x≤ k−a +1 b) Deduce from (a)) that [x+a] = [x] +a

$${Given}\:{that}\:{a}\in\mathbb{Z}\:{and}\:{k}\in\mathbb{Z}\:{and}\:\left[{a}+{x}\right]\:=\:{a}\:+\left[{x}\right]\:=\:{k} \\ $$$$\left.{a}\right)\:{show}\:{that}\:\:{k}−{a}\leqslant\:{x}\leqslant\:{k}−{a}\:+\mathrm{1} \\ $$$$\left.{b}\left.\right)\:{Deduce}\:{from}\:\left({a}\right)\right)\:{that}\:\left[{x}+{a}\right]\:=\:\left[{x}\right]\:+{a} \\ $$

Question Number 75939    Answers: 0   Comments: 2

Question Number 75938    Answers: 0   Comments: 2

solve the inequality ln(x^2 −4e^2 )< 1 + ln3x

$${solve}\:{the}\:{inequality} \\ $$$$\:{ln}\left({x}^{\mathrm{2}} −\mathrm{4}{e}^{\mathrm{2}} \right)<\:\mathrm{1}\:+\:{ln}\mathrm{3}{x} \\ $$

Question Number 75937    Answers: 1   Comments: 0

find the set of values of x for which ((ln x + 2)/(lnx−2)) > ((1−lnx)/(1+lnx))

$${find}\:{the}\:{set}\:{of}\:{values}\:{of}\:{x}\:{for}\:{which}\: \\ $$$$\:\:\frac{{ln}\:{x}\:+\:\mathrm{2}}{{lnx}−\mathrm{2}}\:>\:\frac{\mathrm{1}−{lnx}}{\mathrm{1}+{lnx}} \\ $$

Question Number 75936    Answers: 0   Comments: 2

prove that if [((x + 1)/x)] = 0 then x ≤ −1

$${prove}\:{that}\:{if}\:\left[\frac{{x}\:+\:\mathrm{1}}{{x}}\right]\:=\:\mathrm{0}\:{then}\:{x}\:\leqslant\:−\mathrm{1} \\ $$

Question Number 75934    Answers: 0   Comments: 0

how do i sketch the curve y = x−[x] ,for 0≤x<6

$${how}\:{do}\:{i}\:{sketch}\:{the}\:{curve}\: \\ $$$${y}\:=\:{x}−\left[{x}\right]\:,{for}\:\mathrm{0}\leqslant{x}<\mathrm{6} \\ $$

Question Number 75933    Answers: 0   Comments: 2

solve the inequality a. ln(2x−e) >1 b. (lnx)^2 −lnx−6<0 c. ∣x∣ + ∣x+2∣ ≥ 2 d. ∣2x−5∣ + ∣x +2∣ > 7

$${solve}\:{the}\:{inequality} \\ $$$${a}.\:\:{ln}\left(\mathrm{2}{x}−{e}\right)\:>\mathrm{1} \\ $$$${b}.\:\left({lnx}\right)^{\mathrm{2}} −{lnx}−\mathrm{6}<\mathrm{0} \\ $$$${c}.\:\mid{x}\mid\:+\:\mid{x}+\mathrm{2}\mid\:\geqslant\:\mathrm{2} \\ $$$${d}.\:\mid\mathrm{2}{x}−\mathrm{5}\mid\:+\:\mid{x}\:+\mathrm{2}\mid\:>\:\mathrm{7} \\ $$

  Pg 1364      Pg 1365      Pg 1366      Pg 1367      Pg 1368      Pg 1369      Pg 1370      Pg 1371      Pg 1372      Pg 1373   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com