Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1369
Question Number 76783 Answers: 0 Comments: 0
$${let}\:{f}\left({x}\right)={x}^{\mathrm{3}} \:\:\:\:,\mathrm{2}\pi\:{periodic}\:{odd}\:{developp}\:{f}\:{at}\:{fourier}\:{serie} \\ $$
Question Number 76782 Answers: 1 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{x}} \:\:\frac{{sin}\left({x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} }{dx} \\ $$
Question Number 76781 Answers: 0 Comments: 2
$${find}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}−{e}^{−{x}^{\mathrm{2}} } }{{x}^{\mathrm{2}} }{dx} \\ $$
Question Number 76780 Answers: 0 Comments: 1
$${find}\:{A}=\int_{−\infty} ^{+\infty} \:{x}\:{e}^{−{x}^{\mathrm{2}} } {arctan}\left({x}−\frac{\mathrm{1}}{{x}}\right){dx} \\ $$
Question Number 76779 Answers: 0 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{{x}^{\mathrm{2}} {cosx}}{\mathrm{3}+{sin}^{\mathrm{2}} {x}}{dx} \\ $$
Question Number 76777 Answers: 0 Comments: 0
$${prove}\:{that} \\ $$$$ \\ $$$$\sqrt[{\mathrm{3}}]{{cos}\left(\mathrm{40}°\right)}\:+\:\sqrt[{\mathrm{3}}]{{cos}\left(\mathrm{80}°\right)}\:−\:\sqrt[{\mathrm{3}}]{{cos}\left(\mathrm{20}°\right)}\:=\sqrt[{\mathrm{3}}]{\frac{\mathrm{3}}{\mathrm{2}}\left(\sqrt[{\mathrm{3}}]{\mathrm{9}}−\mathrm{2}\right)} \\ $$
Question Number 76774 Answers: 0 Comments: 6
$$\mathrm{The}\:\mathrm{probability}\:\mathrm{that}\:\mathrm{the}\:\mathrm{birth}\:\mathrm{days}\:\mathrm{of} \\ $$$$\mathrm{six}\:\mathrm{different}\:\mathrm{persons}\:\mathrm{will}\:\mathrm{fall}\:\mathrm{in}\:\mathrm{exactly} \\ $$$$\mathrm{two}\:\mathrm{calendar}\:\mathrm{months}\:\mathrm{is} \\ $$
Question Number 76772 Answers: 0 Comments: 0
Question Number 76771 Answers: 0 Comments: 0
Question Number 76770 Answers: 0 Comments: 0
Question Number 76740 Answers: 0 Comments: 8
$$\mathrm{15}\:\mathrm{persons},\:\mathrm{among}\:\mathrm{whom}\:\mathrm{are}\:{A}\:\mathrm{and}\:{B}, \\ $$$$\mathrm{sit}\:\mathrm{down}\:\mathrm{at}\:\mathrm{random}\:\mathrm{at}\:\mathrm{a}\:\mathrm{round}\:\mathrm{table}. \\ $$$$\mathrm{The}\:\mathrm{probability}\:\mathrm{that}\:\mathrm{there}\:\mathrm{are}\:\mathrm{4}\:\mathrm{persons} \\ $$$$\mathrm{between}\:{A}\:\mathrm{and}\:{B}\:\mathrm{is} \\ $$
Question Number 76726 Answers: 3 Comments: 0
$$\:\mathrm{var}\left(\mathrm{x}\right)\:=\:\mathrm{2}\:\mathrm{then}\:\mathrm{var}\left(\mathrm{2x}\:−\mathrm{3}\right)=? \\ $$$$\mathrm{E}\left(\mathrm{x}\right)\:=\:\mathrm{2}\:\mathrm{then}\:\mathrm{E}\left(\mathrm{2x}\:−\mathrm{3}\right)\:=\:? \\ $$
Question Number 76725 Answers: 0 Comments: 1
$$\mathrm{To}\:\mathrm{prove}\:\mathrm{that}\:\mathrm{x}^{\mathrm{2}} >\mathrm{y}^{\mathrm{2}} ,\:\mathrm{it}\:\mathrm{is}\:\mathrm{sufficient}\:\mathrm{to}\: \\ $$$$\mathrm{prove}\:\mathrm{that}\: \\ $$$$\mathrm{A}.\:\mathrm{x}\:>\:\mathrm{y} \\ $$$$\mathrm{B}.\:\mathrm{x}^{\mathrm{3}} >\mathrm{y}^{\mathrm{3}} \\ $$$$\mathrm{C}.\:\mid\mathrm{x}\mid\:>\:\mid\mathrm{y}\mid \\ $$$$\mathrm{D}.\:\mathrm{x}\:>\:\mathrm{3y} \\ $$
Question Number 76724 Answers: 1 Comments: 1
$$\int_{\mathrm{0}} ^{\mathrm{3}} \mid\mathrm{x}^{\mathrm{2}} −\mathrm{1}\mid\:\mathrm{dx}\:\equiv\: \\ $$
Question Number 76723 Answers: 0 Comments: 0
$$\mathrm{the}\:\mathrm{maclaurin}\:\mathrm{expansion}\:\mathrm{of}\:\mathrm{ln}\:\left(\mathrm{3}\:+\:\mathrm{4}{x}\right)\:{is}\:{valid}\:{for} \\ $$$$\left.{A}\right)\:\:−\frac{\mathrm{3}}{\mathrm{4}}\:\leqslant\:\mathrm{x}<\:\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\left.\mathrm{B}\right)\:−\frac{\mathrm{3}}{\mathrm{4}}<\:\mathrm{x}\:\leqslant\:\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\left.\mathrm{C}\right)\:−\frac{\mathrm{1}}{\mathrm{4}}<\:\mathrm{x}\:\leqslant\:\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\left.\mathrm{D}\right)\:−\frac{\mathrm{3}}{\mathrm{4}}<\:\mathrm{x}\:<\:\frac{\mathrm{3}}{\mathrm{4}} \\ $$
Question Number 76721 Answers: 2 Comments: 0
$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{mean}\:\mathrm{value}\:\mathrm{of}\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{4x}^{\mathrm{2}\:} }\:\:\mathrm{for}\:\:\mathrm{0}\leqslant\mathrm{x}\leqslant\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Question Number 76718 Answers: 0 Comments: 0
$${For}\:{n}\:\in\:{N}\:{prove}\:{by}\:{mathematical} \\ $$$${induction}\:{that} \\ $$$$\mathrm{cos}\:\alpha+\mathrm{cos}\:\left(\alpha+\beta\right)+\mathrm{cos}\:\left[\alpha+\left({n}−\mathrm{1}\right)\beta\right]+...\mathrm{cos}\:\left[\alpha+\left({n}−\mathrm{1}\right)\beta\right]= \\ $$$$\frac{\mathrm{cos}\:\left[\alpha+\left(\frac{{n}−\mathrm{1}}{\mathrm{2}}\right)\beta\right]\mathrm{sin}\:\frac{{n}\beta}{\mathrm{2}}}{\mathrm{sin}\:\frac{{n}}{\mathrm{2}}} \\ $$
Question Number 76717 Answers: 1 Comments: 0
$${A}\:{triangle}\:{is}\:{formed}\:{by} \\ $$$${the}\:{three}\:{straight}\:{line} \\ $$$${y}={m}_{\mathrm{1}} {x}+\frac{{a}}{{m}_{\mathrm{1}} } \\ $$$${y}={m}_{\mathrm{2}} {x}+\frac{{a}}{{m}_{\mathrm{2}} } \\ $$$${y}={m}_{\mathrm{3}} {x}+\frac{{a}}{{m}_{\mathrm{3}} } \\ $$$${prove}\:{that}\:{its}\:{orthocenter} \\ $$$${always}\:{lies}\:{on}\:{the}\:{line} \\ $$$${x}+{a}=\mathrm{0} \\ $$$$ \\ $$
Question Number 76716 Answers: 1 Comments: 4
$${prove}\:{that} \\ $$$$\int_{\mathrm{0}} ^{\pi} \frac{{x}\mathrm{sin}\:{x}}{\mathrm{1}+\mathrm{cos}\:^{\mathrm{2}} {x}}=\frac{\pi^{\mathrm{2}} }{\mathrm{4}} \\ $$
Question Number 76715 Answers: 0 Comments: 3
$${If}\:{u}={arc}\mathrm{sin}\:\frac{{x}}{{y}}+{arc}\mathrm{tan}\:\frac{{y}}{{x}} \\ $$$${show}\:{that}\: \\ $$$${x}\frac{\partial{u}}{{dx}}+{y}\frac{\partial{u}}{{dy}}=\mathrm{0} \\ $$
Question Number 76714 Answers: 1 Comments: 0
$${If}\:{y}=\sqrt{\mathrm{tan}\:{x}+\sqrt{\mathrm{tan}\:{x}+\sqrt{\mathrm{tan}\:{x}+....\infty}}}\: \\ $$$${prove}\:{that} \\ $$$$\frac{{dy}}{{dx}}=\frac{\mathrm{sec}\:^{\mathrm{2}} {x}}{\mathrm{2}{y}−\mathrm{1}} \\ $$
Question Number 76713 Answers: 0 Comments: 0
$${If}\:\mathrm{cos}\:{y}={x}\mathrm{cos}\:\left({a}+{y}\right),{show} \\ $$$${that}\:\frac{{dy}}{{dx}}=\frac{\mathrm{cos}\:^{\mathrm{2}} \left({a}+{y}\right)}{\mathrm{sin}\:{a}} \\ $$
Question Number 76711 Answers: 1 Comments: 0
Question Number 76700 Answers: 1 Comments: 2
Question Number 76696 Answers: 2 Comments: 0
$${what}\:{is}\:{the}\:{value}\:{ln}\left(\mathrm{0}\right).? \\ $$
Question Number 76694 Answers: 0 Comments: 0
Pg 1364 Pg 1365 Pg 1366 Pg 1367 Pg 1368 Pg 1369 Pg 1370 Pg 1371 Pg 1372 Pg 1373
Terms of Service
Privacy Policy
Contact: [email protected]