Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1369

Question Number 75046    Answers: 0   Comments: 3

Question Number 75041    Answers: 1   Comments: 1

1) Show that for a∈]01]the function f_a :R_+ →R defined by f_a (x)=x^a is a−holder function in other way there exist K>0 such as ∀ x,y>0 ∣f_a (x)−f_a (y)∣≤K∣x−y∣^a

$$\left.\mathrm{1}\left.\right)\left.\:\mathrm{Show}\:\mathrm{that}\:\:\mathrm{for}\:\mathrm{a}\in\right]\mathrm{01}\right]\mathrm{the}\:\mathrm{function}\:\:\mathrm{f}_{\mathrm{a}} \::\mathbb{R}_{+} \rightarrow\mathbb{R}\:\mathrm{defined}\:\mathrm{by}\:\mathrm{f}_{\mathrm{a}} \left(\mathrm{x}\right)=\mathrm{x}^{\mathrm{a}} \: \\ $$$$\mathrm{is}\:\:\:\mathrm{a}−\mathrm{holder}\:\mathrm{function}\:\:\mathrm{in}\:\mathrm{other}\:\mathrm{way}\:\:\mathrm{there}\:\mathrm{exist}\:\:\mathrm{K}>\mathrm{0}\:\mathrm{such}\:\mathrm{as}\:\forall\:\mathrm{x},\mathrm{y}>\mathrm{0}\: \\ $$$$\mid\mathrm{f}_{\mathrm{a}} \left(\mathrm{x}\right)−\mathrm{f}_{\mathrm{a}} \left(\mathrm{y}\right)\mid\leqslant\mathrm{K}\mid\mathrm{x}−\mathrm{y}\mid^{\mathrm{a}} \:\: \\ $$$$ \\ $$

Question Number 75040    Answers: 1   Comments: 0

Please can you help me to to show that: cos ((47Π)/(13))=sin ((23Π)/(26))=sin((3Π)/(26))

$$\mathrm{Please}\:\mathrm{can}\:\mathrm{you}\:\mathrm{help}\:\mathrm{me}\:\mathrm{to}\: \\ $$$$\mathrm{to}\:\mathrm{show}\:\mathrm{that}: \\ $$$$\mathrm{cos}\:\frac{\mathrm{47}\Pi}{\mathrm{13}}=\mathrm{sin}\:\frac{\mathrm{23}\Pi}{\mathrm{26}}=\mathrm{sin}\frac{\mathrm{3}\Pi}{\mathrm{26}} \\ $$

Question Number 75034    Answers: 3   Comments: 0

Question Number 75033    Answers: 1   Comments: 0

(4/(11)) < (x/y) < (3/8) x, y ∈ Z^+ min {x+y} = ?

$$\frac{\mathrm{4}}{\mathrm{11}}\:<\:\frac{{x}}{{y}}\:<\:\frac{\mathrm{3}}{\mathrm{8}} \\ $$$${x},\:{y}\:\:\in\:\:\mathbb{Z}^{+} \\ $$$${min}\:\left\{{x}+{y}\right\}\:\:=\:\:? \\ $$

Question Number 75027    Answers: 1   Comments: 1

Question Number 75013    Answers: 1   Comments: 0

The largest interval for which x^(12) −x^9 +x^4 −x+1>0 is (a)−4<x≤0 (b)0<x<1 (c)−100<x<100 (d)−∞<x<∞

$${The}\:{largest}\:{interval}\:{for}\:{which} \\ $$$${x}^{\mathrm{12}} −{x}^{\mathrm{9}} +{x}^{\mathrm{4}} −{x}+\mathrm{1}>\mathrm{0}\:{is} \\ $$$$\left({a}\right)−\mathrm{4}<{x}\leqslant\mathrm{0} \\ $$$$\left({b}\right)\mathrm{0}<{x}<\mathrm{1} \\ $$$$\left({c}\right)−\mathrm{100}<{x}<\mathrm{100} \\ $$$$\left({d}\right)−\infty<{x}<\infty \\ $$

Question Number 75001    Answers: 0   Comments: 2

A block of mass 0.2kg rests on an incline plane of 30° to the horizontal with a velocity of 12m/s.If the coefficient of sliding friction is 0.16, (i)determine how far up the plane the mass travels before stoping. (ii)if the block returns,what is the velocity of the block at the bottom of the plane. (g=9.8m/s)

$${A}\:{block}\:{of}\:{mass}\:\mathrm{0}.\mathrm{2}{kg}\:{rests}\:{on}\:{an}\:{incline} \\ $$$${plane}\:{of}\:\mathrm{30}°\:{to}\:{the}\:{horizontal}\:{with}\:{a} \\ $$$${velocity}\:{of}\:\mathrm{12}{m}/{s}.{If}\:{the}\:{coefficient}\:{of} \\ $$$${sliding}\:{friction}\:{is}\:\mathrm{0}.\mathrm{16}, \\ $$$$\left({i}\right){determine}\:{how}\:{far}\:{up}\:{the}\:{plane}\:{the} \\ $$$${mass}\:{travels}\:{before}\:{stoping}. \\ $$$$\left({ii}\right){if}\:{the}\:{block}\:{returns},{what}\:{is}\:{the} \\ $$$${velocity}\:{of}\:{the}\:{block}\:{at}\:{the}\:{bottom}\:{of}\:{the} \\ $$$${plane}. \\ $$$$ \\ $$$$\left({g}=\mathrm{9}.\mathrm{8}{m}/{s}\right) \\ $$

Question Number 74997    Answers: 1   Comments: 1

Question Number 74995    Answers: 1   Comments: 1

find ∫_0 ^(π/2) Log cosx dx

$$\mathrm{find}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{Log}\:\mathrm{cos}{x}\:{dx} \\ $$

Question Number 74994    Answers: 0   Comments: 6

Question Number 74980    Answers: 1   Comments: 0

Prove that for n∈N^∗ Σ_(p=0) ^(n−1) [x+(p/n)]=[nx]

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{for}\:\mathrm{n}\in\mathbb{N}^{\ast} \\ $$$$\:\underset{\mathrm{p}=\mathrm{0}} {\overset{\mathrm{n}−\mathrm{1}} {\sum}}\:\left[\mathrm{x}+\frac{\mathrm{p}}{\mathrm{n}}\right]=\left[\mathrm{nx}\right] \\ $$

Question Number 74970    Answers: 2   Comments: 13

x+y+z=1 x^2 +y^2 +z^2 =2 x^3 +y^3 +z^3 =3 find x^4 +y^4 +z^4 =? x^5 +y^5 +z^5 =? x^6 +y^6 +z^6 =? ...... x^n +y^n +z^n =?

$${x}+{y}+{z}=\mathrm{1} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} =\mathrm{2} \\ $$$${x}^{\mathrm{3}} +{y}^{\mathrm{3}} +{z}^{\mathrm{3}} =\mathrm{3} \\ $$$$ \\ $$$${find} \\ $$$${x}^{\mathrm{4}} +{y}^{\mathrm{4}} +{z}^{\mathrm{4}} =? \\ $$$${x}^{\mathrm{5}} +{y}^{\mathrm{5}} +{z}^{\mathrm{5}} =? \\ $$$${x}^{\mathrm{6}} +{y}^{\mathrm{6}} +{z}^{\mathrm{6}} =? \\ $$$$...... \\ $$$${x}^{{n}} +{y}^{{n}} +{z}^{{n}} =? \\ $$

Question Number 74966    Answers: 1   Comments: 2

If sin 2A=λsin 2B Prove that ((tan (A+B))/(tan (A−B)))=((λ+1)/(λ−1)) .

$${If}\:\:\mathrm{sin}\:\mathrm{2}{A}=\lambda\mathrm{sin}\:\mathrm{2}{B} \\ $$$${Prove}\:{that}\:\:\frac{\mathrm{tan}\:\left({A}+{B}\right)}{\mathrm{tan}\:\left({A}−{B}\right)}=\frac{\lambda+\mathrm{1}}{\lambda−\mathrm{1}}\:. \\ $$

Question Number 74959    Answers: 1   Comments: 1

f(x)=∣x+5∣−∣x−2∣−∣x+6∣ find f′(x)

$${f}\left({x}\right)=\mid{x}+\mathrm{5}\mid−\mid{x}−\mathrm{2}\mid−\mid{x}+\mathrm{6}\mid \\ $$$$ \\ $$$${find}\:{f}'\left({x}\right) \\ $$

Question Number 74948    Answers: 1   Comments: 0

The hhpotenuse of a right angled triangle has its ends at the points (1,3) and (−4,1) . Find an equation of the legs (perpendicar sides) of the triangle.

$$\mathrm{The}\:\mathrm{hhpotenuse}\:\mathrm{of}\:\mathrm{a}\:\mathrm{right}\:\mathrm{angled}\:\mathrm{triangle} \\ $$$$\mathrm{has}\:\mathrm{its}\:\mathrm{ends}\:\mathrm{at}\:\mathrm{the}\:\mathrm{points}\:\left(\mathrm{1},\mathrm{3}\right)\:\mathrm{and}\:\left(−\mathrm{4},\mathrm{1}\right) \\ $$$$.\:\mathrm{Find}\:\mathrm{an}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{legs}\:\left(\mathrm{perpendicar}\right. \\ $$$$\left.\:\mathrm{sides}\right)\:\mathrm{of}\:\mathrm{the}\:\mathrm{triangle}. \\ $$

Question Number 74947    Answers: 1   Comments: 0

Question Number 74945    Answers: 1   Comments: 1

Question Number 74933    Answers: 0   Comments: 1

differentiate the following functions a)f(x)=2x^5 coshx

$$\mathrm{differentiate}\:\mathrm{the}\:\mathrm{following}\:\mathrm{functions} \\ $$$$\left.\mathrm{a}\right)\mathrm{f}\left(\mathrm{x}\right)=\mathrm{2x}^{\mathrm{5}} \:\mathrm{coshx} \\ $$

Question Number 74978    Answers: 1   Comments: 1

Question Number 74923    Answers: 0   Comments: 3

Σ_(k=1) ^n k^3 =[((n(n+1) )/2)]^2

$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}^{\mathrm{3}} =\left[\frac{{n}\left({n}+\mathrm{1}\right)\:}{\mathrm{2}}\right]^{\mathrm{2}} \\ $$

Question Number 74957    Answers: 0   Comments: 0

what is the exact difference between relation and function ??

$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{exact}\:\mathrm{difference}\:\mathrm{between} \\ $$$$\mathrm{relation}\:\mathrm{and}\:\mathrm{function}\:?? \\ $$

Question Number 74914    Answers: 1   Comments: 0

Can someone solve this question plz? solve the contour integral ∫_C (e^(iz) /z^3 ) dz where C is the circle ∣z∣=2

$${Can}\:{someone}\:{solve}\:{this}\:{question}\:{plz}? \\ $$$${solve}\:{the}\:{contour}\:{integral}\: \\ $$$$\int_{{C}} \:\frac{{e}^{{iz}} }{{z}^{\mathrm{3}} }\:{dz}\:{where}\:{C}\:{is}\:{the}\:{circle}\:\mid{z}\mid=\mathrm{2} \\ $$

Question Number 74912    Answers: 1   Comments: 0

{ ((x^2 =yz+1)),((y^2 =xz+2)),((z^2 =xy+3)) :} ⇒x+y+z=?

$$\begin{cases}{\boldsymbol{\mathrm{x}}^{\mathrm{2}} =\boldsymbol{\mathrm{yz}}+\mathrm{1}}\\{\boldsymbol{\mathrm{y}}^{\mathrm{2}} =\boldsymbol{\mathrm{xz}}+\mathrm{2}}\\{\boldsymbol{\mathrm{z}}^{\mathrm{2}} =\boldsymbol{\mathrm{xy}}+\mathrm{3}}\end{cases}\:\:\:\:\Rightarrow\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{y}}+\boldsymbol{\mathrm{z}}=? \\ $$

Question Number 74904    Answers: 0   Comments: 1

Question Number 74900    Answers: 0   Comments: 2

  Pg 1364      Pg 1365      Pg 1366      Pg 1367      Pg 1368      Pg 1369      Pg 1370      Pg 1371      Pg 1372      Pg 1373   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com