Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1369

Question Number 75186    Answers: 1   Comments: 7

7n ≡ 1 (mod 5) What is the general form of n ?

$$\mathrm{7}{n}\:\equiv\:\mathrm{1}\:\left(\mathrm{mod}\:\mathrm{5}\right) \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{general}\:\mathrm{form}\:\mathrm{of}\:{n}\:? \\ $$

Question Number 75180    Answers: 0   Comments: 2

There are 6 girls and four boys in a class. 3 students are choosen at random so as to be awarded a scholaship.In how many ways can this be done if atlease 1 boy and 1 girl must in the selection

$${There}\:{are}\:\mathrm{6}\:{girls}\:{and}\:{four}\:{boys}\:{in}\:{a}\:{class}. \\ $$$$\mathrm{3}\:{students}\:{are}\:{choosen}\:{at}\:{random}\:{so}\:{as}\:{to}\:{be} \\ $$$${awarded}\:{a}\:{scholaship}.{In}\:{how}\:{many}\:{ways}\:{can} \\ $$$${this}\:{be}\:{done}\:{if}\:{atlease}\:\mathrm{1}\:{boy}\:{and}\:\mathrm{1}\:{girl}\:{must} \\ $$$${in}\:{the}\:{selection} \\ $$$$ \\ $$

Question Number 75178    Answers: 1   Comments: 0

givn that z = 1−i(√3) express z in the form z = r(cosθ + isinθ), hence express z^7 in the form re^(iθ)

$${givn}\:{that}\:{z}\:=\:\mathrm{1}−{i}\sqrt{\mathrm{3}}\:{express}\:{z}\:{in}\:{the}\:{form}\: \\ $$$$\:{z}\:=\:{r}\left({cos}\theta\:+\:{isin}\theta\right),\:{hence}\:{express} \\ $$$${z}^{\mathrm{7}} \:{in}\:{the}\:{form}\:{re}^{{i}\theta} \\ $$

Question Number 75177    Answers: 2   Comments: 2

Question Number 75176    Answers: 1   Comments: 0

P=(√(25x−50))−14(√((x−2)/4))+(√(9x−18)), x≥2 a) Simplify the equation b) Find x if P=3

$$\mathrm{P}=\sqrt{\mathrm{25}{x}−\mathrm{50}}−\mathrm{14}\sqrt{\frac{{x}−\mathrm{2}}{\mathrm{4}}}+\sqrt{\mathrm{9}{x}−\mathrm{18}},\:\:{x}\geqslant\mathrm{2} \\ $$$$\left.\mathrm{a}\right)\:\mathrm{Simplify}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\left.\mathrm{b}\right)\:\mathrm{Find}\:\mathrm{x}\:\mathrm{if}\:\mathrm{P}=\mathrm{3} \\ $$

Question Number 75175    Answers: 1   Comments: 0

solve the differential equation (x^2 −1)(dy/dx) + 2y = 0 when y=3 and x= 2,expressing your answer in the form y=f(x)

$${solve}\:{the}\:{differential}\:{equation} \\ $$$$\:\left({x}^{\mathrm{2}} −\mathrm{1}\right)\frac{{dy}}{{dx}}\:+\:\mathrm{2}{y}\:=\:\mathrm{0}\:{when}\:{y}=\mathrm{3}\:{and}\:{x}=\:\mathrm{2},{expressing} \\ $$$${your}\:{answer}\:{in}\:{the}\:{form}\:{y}={f}\left({x}\right) \\ $$

Question Number 75173    Answers: 1   Comments: 1

Question Number 75166    Answers: 1   Comments: 0

Question Number 75158    Answers: 1   Comments: 0

Question Number 75156    Answers: 1   Comments: 0

Question Number 75147    Answers: 1   Comments: 0

hello show that sin((5π)/(18))cos((13π)/(18))=−(1/2)sin((4π)/9)

$$\mathrm{hello} \\ $$$$\mathrm{show}\:\mathrm{that}\: \\ $$$$\mathrm{sin}\frac{\mathrm{5}\pi}{\mathrm{18}}\mathrm{cos}\frac{\mathrm{13}\pi}{\mathrm{18}}=−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\frac{\mathrm{4}\pi}{\mathrm{9}} \\ $$

Question Number 75141    Answers: 1   Comments: 2

Question Number 75136    Answers: 1   Comments: 3

Question Number 75131    Answers: 1   Comments: 0

please help me to show that tan^2 ((π/8))+2tan((π/8))−1=0

$$\mathrm{please}\:\mathrm{help}\:\mathrm{me}\:\mathrm{to}\:\mathrm{show}\:\mathrm{that} \\ $$$$\mathrm{tan}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{8}}\right)+\mathrm{2tan}\left(\frac{\pi}{\mathrm{8}}\right)−\mathrm{1}=\mathrm{0} \\ $$

Question Number 75124    Answers: 0   Comments: 0

Question Number 75122    Answers: 0   Comments: 4

Question Number 75110    Answers: 1   Comments: 0

Question Number 75105    Answers: 0   Comments: 1

Question Number 75104    Answers: 1   Comments: 0

Question Number 75102    Answers: 0   Comments: 0

show by integration that the centroid of a semi−circular lamina of radius a from the centre is ((4a)/(3π)).

$$\mathrm{show}\:\mathrm{by}\:\mathrm{integration}\:\mathrm{that}\:\mathrm{the}\:\mathrm{centroid} \\ $$$$\mathrm{of}\:\mathrm{a}\:\mathrm{semi}−\mathrm{circular}\:\mathrm{lamina}\:\mathrm{of}\:\mathrm{radius}\:{a}\: \\ $$$$\mathrm{from}\:\mathrm{the}\:\mathrm{centre}\:\mathrm{is}\:\:\:\frac{\mathrm{4}{a}}{\mathrm{3}\pi}. \\ $$

Question Number 75101    Answers: 4   Comments: 2

the vector equations of two lines L_1 and L_2 is given by L_1 :r= i−j+3k + λ(i−j +k) L_2 : r= 2i+aj + 6k + μ(2i + j + 3k) where a,λ,μ are real constants. given that L_1 and L_2 intersect find a. the value of the constant a. b. the position vector of the point of intersection between L_1 and L_2 c. the cosine of the acute angle between L_1 and L_2 please help

$${the}\:{vector}\:{equations}\:{of}\:{two}\:{lines}\:{L}_{\mathrm{1}} \:{and}\:{L}_{\mathrm{2}} \:{is}\:{given}\:{by} \\ $$$$\:{L}_{\mathrm{1}} :{r}=\:\boldsymbol{{i}}−\boldsymbol{{j}}+\mathrm{3}\boldsymbol{{k}}\:+\:\lambda\left(\boldsymbol{{i}}−\boldsymbol{{j}}\:+\boldsymbol{{k}}\right) \\ $$$${L}_{\mathrm{2}} \::\:{r}=\:\mathrm{2}\boldsymbol{{i}}+{a}\boldsymbol{{j}}\:+\:\mathrm{6}\boldsymbol{{k}}\:+\:\mu\left(\mathrm{2}\boldsymbol{{i}}\:+\:\boldsymbol{{j}}\:+\:\mathrm{3}\boldsymbol{{k}}\right) \\ $$$${where}\:{a},\lambda,\mu\:{are}\:{real}\:{constants}. \\ $$$${given}\:{that}\:{L}_{\mathrm{1}} \:{and}\:{L}_{\mathrm{2}} \:{intersect}\:{find} \\ $$$${a}.\:\:{the}\:{value}\:{of}\:{the}\:{constant}\:{a}. \\ $$$${b}.\:\:{the}\:{position}\:{vector}\:{of}\:{the}\:{point}\:{of}\: \\ $$$${intersection}\:{between}\:{L}_{\mathrm{1}} \:{and}\:{L}_{\mathrm{2}} \\ $$$${c}.\:{the}\:{cosine}\:{of}\:{the}\:{acute}\:{angle}\:{between}\:{L}_{\mathrm{1}} \:{and}\:{L}_{\mathrm{2}} \\ $$$${please}\:{help} \\ $$$$ \\ $$

Question Number 75100    Answers: 2   Comments: 0

find the intervals cor which the function h(x) = x^3 −3x is a) strickly increasing b) strickly decreasing

$$\:{find}\:{the}\:{intervals}\:{cor}\:{which}\:{the}\:{function} \\ $$$${h}\left({x}\right)\:=\:{x}^{\mathrm{3}} −\mathrm{3}{x}\:{is} \\ $$$$\left.{a}\right)\:{strickly}\:{increasing} \\ $$$$\left.{b}\right)\:{strickly}\:{decreasing} \\ $$$$ \\ $$

Question Number 75099    Answers: 1   Comments: 4

Given the matrix A = ((1,(−1),1),(0,2,( −1)),(2,3,0) ) and B= ((3,3,(−1)),((−2),(−2),1),((−4),(−5),2) ) find the matrix product AB and BA state the relationship between A and B find also the matrix product BM, where M= ((8),((−7)),(1) ) Hence solve the system of equations: x−y + z = 8, 2y −z =−7, 2x + 3y = 1.

$${Given}\:{the}\:{matrix}\: \\ $$$${A}\:=\:\begin{pmatrix}{\mathrm{1}}&{−\mathrm{1}}&{\mathrm{1}}\\{\mathrm{0}}&{\mathrm{2}}&{\:−\mathrm{1}}\\{\mathrm{2}}&{\mathrm{3}}&{\mathrm{0}}\end{pmatrix}\:\:{and}\:{B}=\:\begin{pmatrix}{\mathrm{3}}&{\mathrm{3}}&{−\mathrm{1}}\\{−\mathrm{2}}&{−\mathrm{2}}&{\mathrm{1}}\\{−\mathrm{4}}&{−\mathrm{5}}&{\mathrm{2}}\end{pmatrix} \\ $$$${find}\:{the}\:{matrix}\:{product}\:{AB}\:{and}\:{BA} \\ $$$${state}\:{the}\:{relationship}\:{between}\:{A}\:{and}\:{B} \\ $$$${find}\:{also}\:{the}\:{matrix}\:{product}\:{BM},\:{where}\:{M}=\begin{pmatrix}{\mathrm{8}}\\{−\mathrm{7}}\\{\mathrm{1}}\end{pmatrix} \\ $$$${Hence}\:{solve}\:{the}\:{system}\:{of}\:{equations}: \\ $$$$\:\:{x}−{y}\:+\:{z}\:=\:\mathrm{8}, \\ $$$$\:\:\:\:\:\:\:\mathrm{2}{y}\:−{z}\:=−\mathrm{7}, \\ $$$$\:\:\mathrm{2}{x}\:+\:\mathrm{3}{y}\:=\:\mathrm{1}. \\ $$

Question Number 75098    Answers: 1   Comments: 0

the function f is defined by f(x) = (2/(x^2 −1)) a) Express f into partial fraction b.show that ∫_3 ^5 f(x) dx = ln((4/3))

$$\mathrm{the}\:\mathrm{function}\:\mathrm{f}\:\mathrm{is}\:\mathrm{defined}\:\mathrm{by}\:{f}\left({x}\right)\:=\:\frac{\mathrm{2}}{{x}^{\mathrm{2}} −\mathrm{1}} \\ $$$$\left.{a}\right)\:\mathrm{Express}\:\mathrm{f}\:\mathrm{into}\:\mathrm{partial}\:\mathrm{fraction} \\ $$$$\mathrm{b}.\mathrm{show}\:\mathrm{that}\:\int_{\mathrm{3}} ^{\mathrm{5}} {f}\left({x}\right)\:{dx}\:=\:{ln}\left(\frac{\mathrm{4}}{\mathrm{3}}\right) \\ $$

Question Number 75093    Answers: 1   Comments: 1

∫cos^3 xsin^3 xdx

$$\int{cos}^{\mathrm{3}} {xsin}^{\mathrm{3}} {xdx} \\ $$

Question Number 75083    Answers: 1   Comments: 0

A function f is given by f(x) = { ((x^2 −3, 0≤x<2)),((4x−7, 2≤x<4)) :} is such that f(x) = f(x + 4) find f(27) and f(−106).

$${A}\:{function}\:{f}\:{is}\:{given}\:{by}\: \\ $$$$\:{f}\left({x}\right)\:=\:\begin{cases}{{x}^{\mathrm{2}} −\mathrm{3},\:\:\mathrm{0}\leqslant{x}<\mathrm{2}}\\{\mathrm{4}{x}−\mathrm{7},\:\mathrm{2}\leqslant{x}<\mathrm{4}}\end{cases} \\ $$$${is}\:{such}\:{that}\:{f}\left({x}\right)\:=\:{f}\left({x}\:+\:\mathrm{4}\right)\: \\ $$$${find}\:\:{f}\left(\mathrm{27}\right)\:{and}\:{f}\left(−\mathrm{106}\right). \\ $$

  Pg 1364      Pg 1365      Pg 1366      Pg 1367      Pg 1368      Pg 1369      Pg 1370      Pg 1371      Pg 1372      Pg 1373   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com