Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1369
Question Number 73484 Answers: 1 Comments: 0
$${decompose}\:{inside}\:{C}\left({x}\right)\:{the}\:{fraction} \\ $$$${F}\left({x}\right)=\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)^{{n}} } \\ $$$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:{F}\left({x}\right){dx} \\ $$
Question Number 73483 Answers: 1 Comments: 0
$${find}\:\int\:\:\:\:\frac{{dx}}{{x}+\mathrm{2}−\sqrt{{x}^{\mathrm{2}} −{x}\:+\mathrm{7}}} \\ $$
Question Number 73482 Answers: 1 Comments: 1
$${find}\:\int\:\:\:\:\frac{{dx}}{\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}+\sqrt{{x}^{\mathrm{2}} \:+\mathrm{3}}} \\ $$
Question Number 73481 Answers: 0 Comments: 0
$${find}\:\int\:\:{ln}\left({x}−{cosx}\right){dx} \\ $$
Question Number 73480 Answers: 0 Comments: 0
$${find}\:\int_{\mathrm{0}} ^{\infty} \:\:{xe}^{−{x}^{\mathrm{2}} } \:{arcran}\left({x}+\frac{\mathrm{1}}{{x}}\right){dx} \\ $$
Question Number 73479 Answers: 1 Comments: 1
$${find}\:\int\:\:\:\:\frac{\mathrm{3}{x}+\mathrm{2}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} \left({x}−\mathrm{2}\right)^{\mathrm{3}} }{dx} \\ $$
Question Number 73478 Answers: 1 Comments: 0
$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\:\frac{{x}^{\mathrm{3}} −\mathrm{3}}{\sqrt{{x}^{\mathrm{2}} −{x}\:+\mathrm{2}}}{dx} \\ $$
Question Number 73477 Answers: 1 Comments: 0
$${calculate}\:\int\:\:\:\frac{{x}^{\mathrm{3}} −\mathrm{4}{x}+\mathrm{5}}{{x}^{\mathrm{2}} −{x}\:+\mathrm{1}}{dx} \\ $$
Question Number 73474 Answers: 0 Comments: 0
$$\rceil\mathrm{888}>>>>>>> \\ $$
Question Number 73473 Answers: 0 Comments: 1
$${let}\:{z}\:{from}\:{C}\:{prove}\:{that}\: \\ $$$${arcsinz}=−{iln}\left({iz}+\sqrt{\mathrm{1}−{z}^{\mathrm{2}} }\right) \\ $$$${arccosz}\:=−{iln}\left({z}+\sqrt{{z}^{\mathrm{2}} −\mathrm{1}}\right) \\ $$
Question Number 73468 Answers: 1 Comments: 0
$$\mathrm{soit}\:\mathrm{le}\:\mathrm{systeme}\:\mathrm{suivant} \\ $$$$\begin{cases}{\mathrm{2s}+\mathrm{4c}+\mathrm{3t}=\mathrm{700}}\\{\mathrm{3s}+\mathrm{2c}+\mathrm{2t}=\mathrm{500}}\end{cases} \\ $$$$\:\:\mathrm{8s}+\mathrm{7c}+\mathrm{8t}=...?... \\ $$$$\mathrm{comment}\:\mathrm{determiner}\:\mathrm{le}\:\mathrm{resultat}\:...?...\: \\ $$$$\mathrm{de}\:\mathrm{la}\:\mathrm{3}^{\mathrm{e}} \mathrm{equation}\:? \\ $$
Question Number 73466 Answers: 1 Comments: 0
$${please}\:{explain}\:{this}\: \\ $$$$\:\underset{{x}\rightarrow\mathrm{0}} {{Lim}}\frac{{sinx}}{{x}}\:=\:\mathrm{1}\:\:{by}\:{l}'{hopitals}\:{theorem} \\ $$$$ \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {{Lim}}\:\frac{{sinx}}{{x}}\:=\:\mathrm{0}\:{by}\:{Squeez}\:{theorem} \\ $$$${is}\:{there}\:{something}\:{wrong}? \\ $$
Question Number 73451 Answers: 0 Comments: 3
Question Number 73441 Answers: 1 Comments: 0
Question Number 73428 Answers: 1 Comments: 2
$${Evaluate}\:: \\ $$$$\left.\mathrm{1}\right)\:\int_{−\mathrm{2}} ^{\:\mathrm{2}} \int_{−\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }} ^{\:\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }} \:\left(\mathrm{3}−{x}\right){dydx}\:. \\ $$$$\left({after}\:{changing}\:{the}\:{integral}\:{to}\:{polar}\:{form}\right). \\ $$$$ \\ $$$$\left.\mathrm{2}\right)\:\int_{\mathrm{0}} ^{\mathrm{4}} \int_{\mathrm{0}} ^{\mathrm{4}−{x}} \int_{\mathrm{0}} ^{\:\mathrm{4}−\frac{{y}^{\mathrm{2}} }{\mathrm{4}}} \:{dzdydx}\:. \\ $$
Question Number 73429 Answers: 1 Comments: 3
$$\:\:\:{Solve}\::\:\int\frac{\left[{cos}^{−\mathrm{1}} {x}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\right]^{−\mathrm{1}} }{{log}_{{e}} \left[\mathrm{2}+\frac{{sin}\left(\mathrm{2}{x}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\right)}{\pi}\right]}{dx} \\ $$$$\:\:{Evaluate}\:\:\int_{−\pi/\mathrm{2}} ^{\:\pi/\mathrm{2}} {sin}^{\mathrm{2}} {xcos}^{\mathrm{2}} {x}\left({cosx}+{sinx}\right){dx} \\ $$
Question Number 73411 Answers: 2 Comments: 2
$${calculate}\:\: \\ $$$$\left.\mathrm{1}\right){cos}\left(\mathrm{1}+{i}\right)\:,\:{sin}\left(\mathrm{1}+\mathrm{3}{i}\right) \\ $$$$\left.\mathrm{2}\right)\:{arctan}\left({i}\right),\:{arctan}\left(\mathrm{2}{i}\right)\:,\:{arctan}\left(\mathrm{1}+{i}\right)\:,{arctan}\left(\mathrm{1}−{i}\right)\:, \\ $$$${arctan}\left(\mathrm{1}+\mathrm{2}{i}\right). \\ $$$$\left.\mathrm{3}\right)\:{have}\:{us}\:\:{conj}\left({arctanz}\right)={arctan}\left(\overset{−} {{z}}\right)? \\ $$
Question Number 73406 Answers: 0 Comments: 0
$${Use}\:{the}\:{Sandwich}\left(\:{Pinchin}\:{or}\:{Squeez}\:\right)\:{theorem}\:{to}\:{prove} \\ $$$${that}\: \\ $$$$\:\underset{{x}\rightarrow{a}} {\mathrm{Lim}}\:\sqrt{{x}}\:=\:\sqrt{{a}}\: \\ $$
Question Number 73405 Answers: 0 Comments: 0
$${can}\:{someone}\:{please}\:{prove}\:{the}\: \\ $$$${Chinese}\:{Remainder}\:{theorem},\:{for}\: \\ $$$${modula}\:{arithmetic}? \\ $$
Question Number 73399 Answers: 3 Comments: 1
$$\begin{cases}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{65}}\\{\left({x}−\mathrm{1}\right)\left({y}−\mathrm{1}\right)=\mathrm{17}}\end{cases} \\ $$$$ \\ $$$${please}\:{help}\:{me}\:{to}\:{solve}\:{it}... \\ $$
Question Number 73397 Answers: 1 Comments: 1
$${find}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{−{t}} {ln}\left(\mathrm{1}−{xt}^{\mathrm{2}} \right){dt}\:\:{with}\:\mid{x}\mid<\mathrm{1} \\ $$$$\left.\mathrm{2}\right){calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{−{t}} {ln}\left(\mathrm{1}−\frac{{t}^{\mathrm{2}} }{\mathrm{2}}\right){dt} \\ $$
Question Number 73396 Answers: 1 Comments: 1
$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{−{t}^{\mathrm{2}} } {ln}\left(\mathrm{1}−{t}\right){dt} \\ $$
Question Number 73378 Answers: 0 Comments: 3
$${Hello}\:,{i}\:{shar}\:{withe}\:{you}\:{nice}\:{problem}\: \\ $$$${show}\:{that}\:\forall{k}\in\mathbb{N}^{\ast} \:\exists{n}\in\mathbb{N}\:{such}\:{that} \\ $$$${k}\leqslant\underset{{j}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{j}}<{k}+\mathrm{1} \\ $$$${have}\:{a}\:{very}\:{Nice}\:{day} \\ $$$$ \\ $$
Question Number 73358 Answers: 0 Comments: 1
$$\mathrm{1}/\mathrm{4}{x}\mathrm{2}−\mathrm{1}/\mathrm{2}{x}−\mathrm{13}=\mathrm{0} \\ $$
Question Number 73356 Answers: 0 Comments: 2
Question Number 73347 Answers: 0 Comments: 0
Pg 1364 Pg 1365 Pg 1366 Pg 1367 Pg 1368 Pg 1369 Pg 1370 Pg 1371 Pg 1372 Pg 1373
Terms of Service
Privacy Policy
Contact: info@tinkutara.com