Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1368

Question Number 64564    Answers: 0   Comments: 2

Question Number 64561    Answers: 1   Comments: 1

Question Number 64559    Answers: 0   Comments: 1

Question Number 64557    Answers: 1   Comments: 3

Question Number 64544    Answers: 1   Comments: 1

Question Number 64545    Answers: 2   Comments: 2

Question Number 64542    Answers: 2   Comments: 0

Question Number 64541    Answers: 1   Comments: 0

lol....QUESTION OF THE DAY SHOW FULL WORKINGS ∫x((((1−x^2 )Ln(1+x^2 )+(1+x^2 )−(1−x^2 )Ln(1−x^2 ))/((1−x^4 )(1+x^2 ))))e^((x^2 −1)/(x^2 +1)) dx

$${lol}....{QUESTION}\:{OF}\:\:{THE}\:{DAY} \\ $$$$ \\ $$$${SHOW}\:{FULL}\:{WORKINGS} \\ $$$$ \\ $$$$\int{x}\left(\frac{\left(\mathrm{1}−{x}^{\mathrm{2}} \right){Ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)+\left(\mathrm{1}+{x}^{\mathrm{2}} \right)−\left(\mathrm{1}−{x}^{\mathrm{2}} \right){Ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)}{\left(\mathrm{1}−{x}^{\mathrm{4}} \right)\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}\right){e}^{\frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{1}}} {dx} \\ $$

Question Number 64539    Answers: 1   Comments: 9

lim_(xat 0) [cos^2 (4x)]/x^2 −lim_(x at 0) [cos^3 (6x)]/x^2

$${lim}_{{xat}\:\mathrm{0}} \left[{cos}^{\mathrm{2}} \left(\mathrm{4}{x}\right)\right]/{x}^{\mathrm{2}} \:\:−{lim}_{{x}\:{at}\:\mathrm{0}} \left[{cos}^{\mathrm{3}} \left(\mathrm{6}{x}\right)\right]/{x}^{\mathrm{2}} \\ $$

Question Number 64534    Answers: 0   Comments: 1

evalate y= 3e^(4x) − (5/(3e^(3x ) )) + 4lin2x at points (a) (0 4) and (1 8).

$${evalate}\:{y}=\:\mathrm{3}{e}^{\mathrm{4}{x}} \:−\:\frac{\mathrm{5}}{\mathrm{3}{e}^{\mathrm{3}{x}\:} }\:+\:\mathrm{4}{lin}\mathrm{2}{x}\:{at}\:\: \\ $$$${points}\:\left({a}\right)\:\left(\mathrm{0}\:\mathrm{4}\right)\:{and}\:\left(\mathrm{1}\:\mathrm{8}\right). \\ $$

Question Number 64533    Answers: 1   Comments: 0

Find all solutions of x real numbers such that 2x^2 − 7x + 6 = 15 ⌊(1/x)⌋⌊x⌋

$${Find}\:\:{all}\:\:{solutions}\:\:{of}\:\:{x}\:\:{real}\:\:{numbers}\:\:{such}\:\:{that} \\ $$$$\mathrm{2}{x}^{\mathrm{2}} \:−\:\mathrm{7}{x}\:+\:\mathrm{6}\:\:=\:\:\mathrm{15}\:\lfloor\frac{\mathrm{1}}{{x}}\rfloor\lfloor{x}\rfloor \\ $$

Question Number 64529    Answers: 0   Comments: 0

calculate ∫_1 ^2 (dx/(√x)) by Rieman sum.

$${calculate}\:\:\int_{\mathrm{1}} ^{\mathrm{2}} \:\frac{{dx}}{\sqrt{{x}}}\:\:\:{by}\:{Rieman}\:{sum}. \\ $$

Question Number 64528    Answers: 0   Comments: 1

find ∫_0 ^1 x^(−x) dx study first the convergence.

$${find}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{−{x}} {dx}\:\:\:{study}\:{first}\:{the}\:{convergence}. \\ $$

Question Number 64525    Answers: 0   Comments: 1

study the convergence of Σ U_n with U_n =∫_0 ^∞ ((cos(nx))/(x^2 +n^2 ))dx (n≥1)

$${study}\:{the}\:{convergence}\:{of}\:\Sigma\:{U}_{{n}} \:\:\:{with} \\ $$$${U}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{cos}\left({nx}\right)}{{x}^{\mathrm{2}} \:+{n}^{\mathrm{2}} }{dx}\:\:\:\left({n}\geqslant\mathrm{1}\right) \\ $$

Question Number 64522    Answers: 1   Comments: 0

In a hospital, Dr Steve has worked more night shifts than Dr Gregg who has worked five night shifts. Dr Okon has worked 15 night shifts more than Dr Steve and Dr Gregg combined. Dr. Uche has worked eight night shifts less than Dr Steve.How many night shifts has Dr. Steve worked? a)10 b)9 c)8 d)7

$${In}\:{a}\:{hospital},\:{Dr}\:{Steve}\:{has}\:{worked} \\ $$$${more}\:{night}\:{shifts}\:{than}\:{Dr}\:{Gregg}\:{who} \\ $$$${has}\:{worked}\:{five}\:{night}\:{shifts}.\:{Dr}\:{Okon} \\ $$$${has}\:{worked}\:\mathrm{15}\:{night}\:{shifts}\:{more}\:{than} \\ $$$${Dr}\:{Steve}\:{and}\:{Dr}\:{Gregg}\:{combined}. \\ $$$${Dr}.\:{Uche}\:{has}\:{worked}\:{eight}\:{night}\:{shifts} \\ $$$${less}\:{than}\:{Dr}\:{Steve}.{How}\:{many}\:{night} \\ $$$${shifts}\:{has}\:{Dr}.\:{Steve}\:{worked}? \\ $$$$\left.{a}\left.\right)\left.\mathrm{1}\left.\mathrm{0}\:{b}\right)\mathrm{9}\:{c}\right)\mathrm{8}\:{d}\right)\mathrm{7} \\ $$

Question Number 64519    Answers: 1   Comments: 0

a,b,c is a geometric progression such that a+b+c=26 a^2 +b^2 +c^2 =364 find a,b,c

$${a},{b},{c}\:{is}\:{a}\:{geometric}\:{progression}\:{such} \\ $$$${that} \\ $$$${a}+{b}+{c}=\mathrm{26} \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} =\mathrm{364} \\ $$$$ \\ $$$${find}\:{a},{b},{c} \\ $$

Question Number 64516    Answers: 2   Comments: 5

Question Number 64514    Answers: 0   Comments: 2

y=arc tan[(√((1−cosx)/(1+cosx)))] y^ =?

$${y}={arc}\:{tan}\left[\sqrt{\frac{\mathrm{1}−{cosx}}{\mathrm{1}+{cosx}}}\right] \\ $$$${y}^{} =? \\ $$

Question Number 64498    Answers: 0   Comments: 0

please, anyone help me to solve this i. Σ_(k=1) ^n cos(((k^2 π)/n)) ii. Σ_(k=1) ^(n) sin(((k^2 π)/n)) thank you.

$$\mathrm{please},\:\mathrm{anyone}\:\mathrm{help}\:\mathrm{me}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{this} \\ $$$$\mathrm{i}.\:\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\mathrm{cos}\left(\frac{\mathrm{k}^{\mathrm{2}} \pi}{\mathrm{n}}\right) \\ $$$$\mathrm{ii}.\:\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\Sigma}}\mathrm{sin}\left(\frac{\mathrm{k}^{\mathrm{2}} \pi}{\mathrm{n}}\right) \\ $$$$\mathrm{thank}\:\mathrm{you}. \\ $$

Question Number 64508    Answers: 2   Comments: 1

factorize (x+1)(x+3)(x+5)(x+7)+16

$$\mathrm{factorize}\:\left(\mathrm{x}+\mathrm{1}\right)\left(\mathrm{x}+\mathrm{3}\right)\left(\mathrm{x}+\mathrm{5}\right)\left(\mathrm{x}+\mathrm{7}\right)+\mathrm{16} \\ $$

Question Number 64478    Answers: 1   Comments: 2

Question Number 64477    Answers: 0   Comments: 1

pls i need it urgently... am stuck workings please (1) ∫Ln(1−Lnx)dx (2) ∫(1/(Lnx))dx (3)∫ Ln(−2Lnx)dx God will honour u 4 ur replies

$${pls}\:\:{i}\:{need}\:{it}\:{urgently}...\:{am}\:{stuck} \\ $$$${workings}\:{please} \\ $$$$\left(\mathrm{1}\right)\:\:\int{Ln}\left(\mathrm{1}−{Lnx}\right){dx} \\ $$$$ \\ $$$$\left(\mathrm{2}\right)\:\:\int\frac{\mathrm{1}}{{Lnx}}{dx} \\ $$$$ \\ $$$$\left(\mathrm{3}\right)\int\:{Ln}\left(−\mathrm{2}{Lnx}\right){dx} \\ $$$$ \\ $$$${God}\:{will}\:{honour}\:{u}\:\mathrm{4}\:{ur}\:{replies} \\ $$

Question Number 64475    Answers: 2   Comments: 6

solve the equation sin(x)+sin(2x)+sin(3x)=cos(x)+cos(2x)+cos(3x)

$${solve}\:{the}\:{equation} \\ $$$${sin}\left({x}\right)+{sin}\left(\mathrm{2}{x}\right)+{sin}\left(\mathrm{3}{x}\right)={cos}\left({x}\right)+{cos}\left(\mathrm{2}{x}\right)+{cos}\left(\mathrm{3}{x}\right) \\ $$

Question Number 64471    Answers: 1   Comments: 0

∫((tanx))^(1/4) dx

$$\int\sqrt[{\mathrm{4}}]{{tanx}}{dx} \\ $$

Question Number 64469    Answers: 1   Comments: 0

Question Number 64465    Answers: 0   Comments: 0

vy

$${vy} \\ $$

  Pg 1363      Pg 1364      Pg 1365      Pg 1366      Pg 1367      Pg 1368      Pg 1369      Pg 1370      Pg 1371      Pg 1372   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com