Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1368

Question Number 75081    Answers: 1   Comments: 0

Evaluate ∫_1 ^(3 ) (x^2 /(1+x)) dx

$${Evaluate}\: \\ $$$$\:\int_{\mathrm{1}} ^{\mathrm{3}\:} \frac{{x}^{\mathrm{2}} }{\mathrm{1}+{x}}\:{dx} \\ $$

Question Number 75080    Answers: 0   Comments: 1

Find out A=Σ_(n=0) ^∞ ∫_0 ^(π/2) (1−(√(sinx)))^n cosxdx

$$\mathrm{Find}\:\mathrm{out}\: \\ $$$$\mathrm{A}=\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\mathrm{1}−\sqrt{\mathrm{sinx}}\right)^{\mathrm{n}} \mathrm{cosxdx} \\ $$

Question Number 75079    Answers: 0   Comments: 0

Let f∈C([0,1],[0,1]) Prove that lim_(n→∞) ∫_([0,1]^n ) f((1/n)Σ_(i=1) ^n x_i )dx_1 ....dx_n =f((1/2))

$$\mathrm{Let}\:\mathrm{f}\in\mathrm{C}\left(\left[\mathrm{0},\mathrm{1}\right],\left[\mathrm{0},\mathrm{1}\right]\right)\:\: \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\:\int_{\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{n}} } \mathrm{f}\left(\frac{\mathrm{1}}{\mathrm{n}}\underset{\mathrm{i}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\mathrm{x}_{\mathrm{i}} \:\right)\mathrm{dx}_{\mathrm{1}} ....\mathrm{dx}_{\mathrm{n}} \:=\mathrm{f}\left(\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$

Question Number 75078    Answers: 1   Comments: 0

Question Number 75066    Answers: 1   Comments: 0

Prove that if f is a function R→R and there exist x_0 >0 , such as L(f)(x_0 ) exist then lim_(t→∞) f(t)e^(−x_0 t) =0 and ∀ x>x_0 L(f)(x) exist. L(f) is the Laplace transformed function

$$\mathrm{Prove}\:\:\mathrm{that}\:\mathrm{if}\:\:\mathrm{f}\:\mathrm{is}\:\mathrm{a}\:\mathrm{function}\:\mathbb{R}\rightarrow\mathbb{R}\: \\ $$$$\mathrm{and}\:\:\mathrm{there}\:\mathrm{exist}\:\mathrm{x}_{\mathrm{0}} >\mathrm{0}\:\:,\:\mathrm{such}\:\mathrm{as}\:\:\mathrm{L}\left(\mathrm{f}\right)\left(\mathrm{x}_{\mathrm{0}} \right)\:\mathrm{exist}\: \\ $$$$\mathrm{then}\:\underset{\mathrm{t}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{f}\left(\mathrm{t}\right)\mathrm{e}^{−\mathrm{x}_{\mathrm{0}} \mathrm{t}} =\mathrm{0}\:\mathrm{and}\:\forall\:\mathrm{x}>\mathrm{x}_{\mathrm{0}} \:\:\mathrm{L}\left(\mathrm{f}\right)\left(\mathrm{x}\right)\:\mathrm{exist}. \\ $$$$\mathrm{L}\left(\mathrm{f}\right)\:\mathrm{is}\:\mathrm{the}\:\mathrm{Laplace}\:\mathrm{transformed}\:\mathrm{function} \\ $$

Question Number 75063    Answers: 1   Comments: 1

calculate Σ_(n=1) ^(17) (((−1)^n )/n^3 )

$${calculate}\:\:\sum_{{n}=\mathrm{1}} ^{\mathrm{17}} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{3}} } \\ $$

Question Number 75059    Answers: 0   Comments: 0

Question Number 75058    Answers: 1   Comments: 2

in triangle: ABC: a=(√(2 )),b−c=(((√2)+1)/2),B^ −C^ =(𝛑/2) find: h_a , S_(ABC ) ,d_(a ) , R ,A^ .

$$\boldsymbol{\mathrm{in}}\:\boldsymbol{\mathrm{triangle}}:\:\:\boldsymbol{\mathrm{ABC}}: \\ $$$$\boldsymbol{\mathrm{a}}=\sqrt{\mathrm{2}\:},\boldsymbol{\mathrm{b}}−\boldsymbol{\mathrm{c}}=\frac{\sqrt{\mathrm{2}}+\mathrm{1}}{\mathrm{2}},\overset{} {\boldsymbol{\mathrm{B}}}−\overset{} {\boldsymbol{\mathrm{C}}}=\frac{\boldsymbol{\pi}}{\mathrm{2}} \\ $$$$\boldsymbol{\mathrm{find}}:\:\:\boldsymbol{\mathrm{h}}_{\boldsymbol{\mathrm{a}}} ,\:\:\boldsymbol{\mathrm{S}}_{\boldsymbol{\mathrm{ABC}}\:\:} ,\boldsymbol{\mathrm{d}}_{\boldsymbol{\mathrm{a}}\:\:\:} ,\:\boldsymbol{\mathrm{R}}\:\:\:\:,\overset{} {\boldsymbol{\mathrm{A}}}. \\ $$

Question Number 75048    Answers: 1   Comments: 1

I would like that you help me to show this equality: 16cos (Π/(24))cos((5Π)/(24))cos((7Π)/(24))cos((11Π)/(24))=1

$$\mathrm{I}\:\mathrm{would}\:\mathrm{like}\:\mathrm{that}\:\mathrm{you}\:\mathrm{help}\:\mathrm{me}\:\mathrm{to}\: \\ $$$$\mathrm{show}\:\mathrm{this}\:\mathrm{equality}: \\ $$$$\mathrm{16cos}\:\frac{\Pi}{\mathrm{24}}\mathrm{cos}\frac{\mathrm{5}\Pi}{\mathrm{24}}\mathrm{cos}\frac{\mathrm{7}\Pi}{\mathrm{24}}\mathrm{cos}\frac{\mathrm{11}\Pi}{\mathrm{24}}=\mathrm{1} \\ $$

Question Number 75046    Answers: 0   Comments: 3

Question Number 75041    Answers: 1   Comments: 1

1) Show that for a∈]01]the function f_a :R_+ →R defined by f_a (x)=x^a is a−holder function in other way there exist K>0 such as ∀ x,y>0 ∣f_a (x)−f_a (y)∣≤K∣x−y∣^a

$$\left.\mathrm{1}\left.\right)\left.\:\mathrm{Show}\:\mathrm{that}\:\:\mathrm{for}\:\mathrm{a}\in\right]\mathrm{01}\right]\mathrm{the}\:\mathrm{function}\:\:\mathrm{f}_{\mathrm{a}} \::\mathbb{R}_{+} \rightarrow\mathbb{R}\:\mathrm{defined}\:\mathrm{by}\:\mathrm{f}_{\mathrm{a}} \left(\mathrm{x}\right)=\mathrm{x}^{\mathrm{a}} \: \\ $$$$\mathrm{is}\:\:\:\mathrm{a}−\mathrm{holder}\:\mathrm{function}\:\:\mathrm{in}\:\mathrm{other}\:\mathrm{way}\:\:\mathrm{there}\:\mathrm{exist}\:\:\mathrm{K}>\mathrm{0}\:\mathrm{such}\:\mathrm{as}\:\forall\:\mathrm{x},\mathrm{y}>\mathrm{0}\: \\ $$$$\mid\mathrm{f}_{\mathrm{a}} \left(\mathrm{x}\right)−\mathrm{f}_{\mathrm{a}} \left(\mathrm{y}\right)\mid\leqslant\mathrm{K}\mid\mathrm{x}−\mathrm{y}\mid^{\mathrm{a}} \:\: \\ $$$$ \\ $$

Question Number 75040    Answers: 1   Comments: 0

Please can you help me to to show that: cos ((47Π)/(13))=sin ((23Π)/(26))=sin((3Π)/(26))

$$\mathrm{Please}\:\mathrm{can}\:\mathrm{you}\:\mathrm{help}\:\mathrm{me}\:\mathrm{to}\: \\ $$$$\mathrm{to}\:\mathrm{show}\:\mathrm{that}: \\ $$$$\mathrm{cos}\:\frac{\mathrm{47}\Pi}{\mathrm{13}}=\mathrm{sin}\:\frac{\mathrm{23}\Pi}{\mathrm{26}}=\mathrm{sin}\frac{\mathrm{3}\Pi}{\mathrm{26}} \\ $$

Question Number 75034    Answers: 3   Comments: 0

Question Number 75033    Answers: 1   Comments: 0

(4/(11)) < (x/y) < (3/8) x, y ∈ Z^+ min {x+y} = ?

$$\frac{\mathrm{4}}{\mathrm{11}}\:<\:\frac{{x}}{{y}}\:<\:\frac{\mathrm{3}}{\mathrm{8}} \\ $$$${x},\:{y}\:\:\in\:\:\mathbb{Z}^{+} \\ $$$${min}\:\left\{{x}+{y}\right\}\:\:=\:\:? \\ $$

Question Number 75027    Answers: 1   Comments: 1

Question Number 75013    Answers: 1   Comments: 0

The largest interval for which x^(12) −x^9 +x^4 −x+1>0 is (a)−4<x≤0 (b)0<x<1 (c)−100<x<100 (d)−∞<x<∞

$${The}\:{largest}\:{interval}\:{for}\:{which} \\ $$$${x}^{\mathrm{12}} −{x}^{\mathrm{9}} +{x}^{\mathrm{4}} −{x}+\mathrm{1}>\mathrm{0}\:{is} \\ $$$$\left({a}\right)−\mathrm{4}<{x}\leqslant\mathrm{0} \\ $$$$\left({b}\right)\mathrm{0}<{x}<\mathrm{1} \\ $$$$\left({c}\right)−\mathrm{100}<{x}<\mathrm{100} \\ $$$$\left({d}\right)−\infty<{x}<\infty \\ $$

Question Number 75001    Answers: 0   Comments: 2

A block of mass 0.2kg rests on an incline plane of 30° to the horizontal with a velocity of 12m/s.If the coefficient of sliding friction is 0.16, (i)determine how far up the plane the mass travels before stoping. (ii)if the block returns,what is the velocity of the block at the bottom of the plane. (g=9.8m/s)

$${A}\:{block}\:{of}\:{mass}\:\mathrm{0}.\mathrm{2}{kg}\:{rests}\:{on}\:{an}\:{incline} \\ $$$${plane}\:{of}\:\mathrm{30}°\:{to}\:{the}\:{horizontal}\:{with}\:{a} \\ $$$${velocity}\:{of}\:\mathrm{12}{m}/{s}.{If}\:{the}\:{coefficient}\:{of} \\ $$$${sliding}\:{friction}\:{is}\:\mathrm{0}.\mathrm{16}, \\ $$$$\left({i}\right){determine}\:{how}\:{far}\:{up}\:{the}\:{plane}\:{the} \\ $$$${mass}\:{travels}\:{before}\:{stoping}. \\ $$$$\left({ii}\right){if}\:{the}\:{block}\:{returns},{what}\:{is}\:{the} \\ $$$${velocity}\:{of}\:{the}\:{block}\:{at}\:{the}\:{bottom}\:{of}\:{the} \\ $$$${plane}. \\ $$$$ \\ $$$$\left({g}=\mathrm{9}.\mathrm{8}{m}/{s}\right) \\ $$

Question Number 74997    Answers: 1   Comments: 1

Question Number 74995    Answers: 1   Comments: 1

find ∫_0 ^(π/2) Log cosx dx

$$\mathrm{find}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{Log}\:\mathrm{cos}{x}\:{dx} \\ $$

Question Number 74994    Answers: 0   Comments: 6

Question Number 74980    Answers: 1   Comments: 0

Prove that for n∈N^∗ Σ_(p=0) ^(n−1) [x+(p/n)]=[nx]

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{for}\:\mathrm{n}\in\mathbb{N}^{\ast} \\ $$$$\:\underset{\mathrm{p}=\mathrm{0}} {\overset{\mathrm{n}−\mathrm{1}} {\sum}}\:\left[\mathrm{x}+\frac{\mathrm{p}}{\mathrm{n}}\right]=\left[\mathrm{nx}\right] \\ $$

Question Number 74970    Answers: 2   Comments: 13

x+y+z=1 x^2 +y^2 +z^2 =2 x^3 +y^3 +z^3 =3 find x^4 +y^4 +z^4 =? x^5 +y^5 +z^5 =? x^6 +y^6 +z^6 =? ...... x^n +y^n +z^n =?

$${x}+{y}+{z}=\mathrm{1} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} =\mathrm{2} \\ $$$${x}^{\mathrm{3}} +{y}^{\mathrm{3}} +{z}^{\mathrm{3}} =\mathrm{3} \\ $$$$ \\ $$$${find} \\ $$$${x}^{\mathrm{4}} +{y}^{\mathrm{4}} +{z}^{\mathrm{4}} =? \\ $$$${x}^{\mathrm{5}} +{y}^{\mathrm{5}} +{z}^{\mathrm{5}} =? \\ $$$${x}^{\mathrm{6}} +{y}^{\mathrm{6}} +{z}^{\mathrm{6}} =? \\ $$$$...... \\ $$$${x}^{{n}} +{y}^{{n}} +{z}^{{n}} =? \\ $$

Question Number 74966    Answers: 1   Comments: 2

If sin 2A=λsin 2B Prove that ((tan (A+B))/(tan (A−B)))=((λ+1)/(λ−1)) .

$${If}\:\:\mathrm{sin}\:\mathrm{2}{A}=\lambda\mathrm{sin}\:\mathrm{2}{B} \\ $$$${Prove}\:{that}\:\:\frac{\mathrm{tan}\:\left({A}+{B}\right)}{\mathrm{tan}\:\left({A}−{B}\right)}=\frac{\lambda+\mathrm{1}}{\lambda−\mathrm{1}}\:. \\ $$

Question Number 74959    Answers: 1   Comments: 1

f(x)=∣x+5∣−∣x−2∣−∣x+6∣ find f′(x)

$${f}\left({x}\right)=\mid{x}+\mathrm{5}\mid−\mid{x}−\mathrm{2}\mid−\mid{x}+\mathrm{6}\mid \\ $$$$ \\ $$$${find}\:{f}'\left({x}\right) \\ $$

Question Number 74948    Answers: 1   Comments: 0

The hhpotenuse of a right angled triangle has its ends at the points (1,3) and (−4,1) . Find an equation of the legs (perpendicar sides) of the triangle.

$$\mathrm{The}\:\mathrm{hhpotenuse}\:\mathrm{of}\:\mathrm{a}\:\mathrm{right}\:\mathrm{angled}\:\mathrm{triangle} \\ $$$$\mathrm{has}\:\mathrm{its}\:\mathrm{ends}\:\mathrm{at}\:\mathrm{the}\:\mathrm{points}\:\left(\mathrm{1},\mathrm{3}\right)\:\mathrm{and}\:\left(−\mathrm{4},\mathrm{1}\right) \\ $$$$.\:\mathrm{Find}\:\mathrm{an}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{legs}\:\left(\mathrm{perpendicar}\right. \\ $$$$\left.\:\mathrm{sides}\right)\:\mathrm{of}\:\mathrm{the}\:\mathrm{triangle}. \\ $$

Question Number 74947    Answers: 1   Comments: 0

  Pg 1363      Pg 1364      Pg 1365      Pg 1366      Pg 1367      Pg 1368      Pg 1369      Pg 1370      Pg 1371      Pg 1372   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com