Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1368
Question Number 76075 Answers: 1 Comments: 0
$$\mathrm{how}\:\mathrm{i}\:\mathrm{evaluate}\:\mathrm{sin}\left(\pi/\mathrm{7}\right)×\mathrm{sin}\left(\mathrm{2}\pi/\mathrm{7}\right)×\mathrm{sin}\left(\mathrm{3}\pi/\mathrm{7}\right)\: \\ $$$$\mathrm{please}\:\mathrm{help}\:\mathrm{me} \\ $$
Question Number 76061 Answers: 1 Comments: 0
$$\mathrm{What}'\mathrm{s}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of} \\ $$$$\frac{\mathrm{13}{a}+\mathrm{13}{b}+\mathrm{2}{c}}{\mathrm{2}{a}+\mathrm{2}{b}}+\frac{\mathrm{24}{a}−{b}+\mathrm{13}{c}}{\mathrm{2}{b}+\mathrm{2}{c}}+\frac{−{a}+\mathrm{24}{b}+\mathrm{13}{c}}{\mathrm{2}{a}+\mathrm{2}{c}}? \\ $$$$\left({a},{b},{c}\:\mathrm{are}\:\mathrm{positive}\:\mathrm{numbers}.\right) \\ $$$$\mathrm{I}\:\mathrm{think}\:\mathrm{nobody}\:\mathrm{can}\:\mathrm{solve}\:\mathrm{this}. \\ $$
Question Number 76053 Answers: 1 Comments: 2
$${how}\:{I}\:{calculate}\:\int\frac{\mathrm{1}}{{x}^{\mathrm{8}} +{x}^{\mathrm{2}} }{dx}\:? \\ $$
Question Number 76052 Answers: 0 Comments: 1
Question Number 76048 Answers: 2 Comments: 0
$$\int{e}^{{x}^{\mathrm{2}} } {dx} \\ $$
Question Number 76038 Answers: 1 Comments: 0
Question Number 76037 Answers: 1 Comments: 0
$${Prove}\:{That} \\ $$$$\mathrm{sin}\:\mathrm{3}°\mathrm{sin}\:\mathrm{39}°\mathrm{sin}\:\mathrm{75}°=\mathrm{sin}\:\mathrm{9}°\mathrm{sin}\:\mathrm{24}°\mathrm{sin}\:\mathrm{30}° \\ $$
Question Number 76034 Answers: 1 Comments: 0
$$\: \\ $$$$\:\mathrm{53}^{\boldsymbol{\mathrm{log}}_{\boldsymbol{\mathrm{x}}} \left(\mathrm{7}\right)} \:=\:\sqrt{\boldsymbol{\mathrm{x}}} \\ $$$$\: \\ $$$$\:\boldsymbol{\mathrm{x}}\:=\:? \\ $$$$\: \\ $$
Question Number 76032 Answers: 0 Comments: 0
Question Number 76015 Answers: 0 Comments: 0
Question Number 76014 Answers: 0 Comments: 0
Question Number 76013 Answers: 1 Comments: 0
Question Number 76012 Answers: 1 Comments: 0
$$\mathrm{show}\:\mathrm{that}\: \\ $$$$\mathrm{1}−\mathrm{3sin}^{\mathrm{2}} {x}\mathrm{cos}^{\mathrm{2}} {x}=\frac{\mathrm{5}}{\mathrm{8}}+\frac{\mathrm{3}}{\mathrm{8}}\boldsymbol{\mathrm{cos}}\mathrm{4}\boldsymbol{{x}} \\ $$
Question Number 76009 Answers: 1 Comments: 0
$${hiw}\:{do}\:{i}\:{solve} \\ $$$$\mathrm{2}^{{x}} \:=\:\mathrm{4}{x}? \\ $$
Question Number 76003 Answers: 1 Comments: 0
$$\mathrm{22}+\mathrm{2} \\ $$
Question Number 75991 Answers: 1 Comments: 1
Question Number 75990 Answers: 0 Comments: 0
Question Number 75989 Answers: 0 Comments: 0
Question Number 75988 Answers: 0 Comments: 3
Question Number 75987 Answers: 1 Comments: 0
Question Number 75986 Answers: 1 Comments: 1
Question Number 75985 Answers: 1 Comments: 0
Question Number 75984 Answers: 1 Comments: 0
Question Number 75983 Answers: 0 Comments: 2
$$\mathrm{show}\:\mathrm{that} \\ $$$$\mathrm{cos}^{\mathrm{6}} \mathrm{x}+\mathrm{sin}^{\mathrm{6}} \mathrm{x}=\frac{\mathrm{1}}{\mathrm{8}}\left(\mathrm{5}+\mathrm{3cos4x}\right) \\ $$
Question Number 75976 Answers: 0 Comments: 3
$$\left.\mathrm{h}\left.\mathrm{ello}\:\:\mathrm{solve}\:\mathrm{it}\:\mathrm{in}\:\right]−\pi;\pi\right]\:\mathrm{and}\:\mathrm{place}\:\mathrm{solutions} \\ $$$$\mathrm{in}\:\mathrm{trigonometric}\:\mathrm{circle}. \\ $$$$\mathrm{cos}^{\mathrm{6}} \mathrm{x}+\mathrm{sin}^{\mathrm{6}} \mathrm{x}=\frac{\mathrm{3}}{\mathrm{8}}\left(\sqrt{\mathrm{3}}\mathrm{sin4x}+\frac{\mathrm{8}}{\mathrm{3}}\right) \\ $$$$\mathrm{please}\:\mathrm{help}\:\mathrm{me}... \\ $$
Question Number 76077 Answers: 2 Comments: 3
$$\boldsymbol{\mathrm{Find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{maximum}}\:\boldsymbol{\mathrm{area}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{an}}\:\boldsymbol{\mathrm{isosceles}}\:\boldsymbol{\mathrm{triangle}} \\ $$$$\boldsymbol{\mathrm{inscribed}}\:\boldsymbol{\mathrm{in}}\:\boldsymbol{\mathrm{an}}\:\boldsymbol{\mathrm{ellipse}}\:\frac{\boldsymbol{{x}}^{\mathrm{2}} }{\boldsymbol{{a}}^{\mathrm{2}} }\:+\:\frac{\boldsymbol{{y}}^{\mathrm{2}} }{\boldsymbol{{b}}^{\mathrm{2}} }\:=\:\mathrm{1}\boldsymbol{\mathrm{with}}\:\boldsymbol{\mathrm{its}}\:\boldsymbol{\mathrm{vetrex}}\: \\ $$$$\boldsymbol{\mathrm{at}}\:\boldsymbol{\mathrm{one}}\:\boldsymbol{\mathrm{end}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{major}}\:\boldsymbol{\mathrm{axis}}\:?\:? \\ $$
Pg 1363 Pg 1364 Pg 1365 Pg 1366 Pg 1367 Pg 1368 Pg 1369 Pg 1370 Pg 1371 Pg 1372
Terms of Service
Privacy Policy
Contact: info@tinkutara.com