Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1367

Question Number 73706    Answers: 1   Comments: 0

If ((tan 3A)/(tan A)) = k, then ((sin 3A)/(sin A)) is equal to

$$\mathrm{If}\:\:\frac{\mathrm{tan}\:\mathrm{3}{A}}{\mathrm{tan}\:{A}}\:=\:{k},\:\mathrm{then}\:\frac{\mathrm{sin}\:\mathrm{3}{A}}{\mathrm{sin}\:{A}}\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$

Question Number 73712    Answers: 1   Comments: 0

Question Number 73697    Answers: 1   Comments: 1

find a formulae for calculus of arctan(x+iy)

$${find}\:{a}\:{formulae}\:{for}\:{calculus}\:{of}\:{arctan}\left({x}+{iy}\right) \\ $$

Question Number 73689    Answers: 2   Comments: 0

∫_(−1) ^( 1) (2+x)sin^(−1) (((√(3−3x^2 ))/(2+x)))dx = ?

$$\int_{−\mathrm{1}} ^{\:\:\mathrm{1}} \left(\mathrm{2}+{x}\right)\mathrm{sin}^{−\mathrm{1}} \left(\frac{\sqrt{\mathrm{3}−\mathrm{3}{x}^{\mathrm{2}} }}{\mathrm{2}+{x}}\right){dx}\:=\:? \\ $$

Question Number 73679    Answers: 0   Comments: 1

We have updated backend code to disallow delete of question which are already answered or commented.

$$\mathrm{We}\:\mathrm{have}\:\mathrm{updated}\:\mathrm{backend}\:\mathrm{code}\:\mathrm{to}\: \\ $$$$\mathrm{disallow}\:\mathrm{delete}\:\mathrm{of}\:\mathrm{question}\:\mathrm{which}\:\mathrm{are} \\ $$$$\mathrm{already}\:\mathrm{answered}\:\mathrm{or}\:\mathrm{commented}. \\ $$$$ \\ $$

Question Number 73673    Answers: 2   Comments: 3

Question Number 73671    Answers: 0   Comments: 0

Question Number 73668    Answers: 1   Comments: 0

Qn . ∫(e^(2x^2 +2x+6) )dx ... I need help plz..

$$\:{Qn}\:.\:\int\left({e}^{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{6}} \right){dx} \\ $$$$\:...\:{I}\:{need}\:{help}\:{plz}.. \\ $$$$ \\ $$$$ \\ $$

Question Number 73665    Answers: 1   Comments: 0

if cos^2 (θ)=((m^2 −1)/3) , tan^3 ((θ/2))=tan(a) prove that ((cos^2 (a)))^(1/3) + ((sin^2 (a)))^(1/3) = ((((2/m))^2 ))^(1/3)

$${if} \\ $$$$ \\ $$$${cos}^{\mathrm{2}} \left(\theta\right)=\frac{{m}^{\mathrm{2}} −\mathrm{1}}{\mathrm{3}}\:\:,\:\:{tan}^{\mathrm{3}} \left(\frac{\theta}{\mathrm{2}}\right)={tan}\left({a}\right) \\ $$$$ \\ $$$${prove}\:{that} \\ $$$$ \\ $$$$\sqrt[{\mathrm{3}}]{{cos}^{\mathrm{2}} \left({a}\right)}\:+\:\sqrt[{\mathrm{3}}]{{sin}^{\mathrm{2}} \left({a}\right)}\:=\:\sqrt[{\mathrm{3}}]{\left(\frac{\mathrm{2}}{{m}}\right)^{\mathrm{2}} } \\ $$

Question Number 73663    Answers: 1   Comments: 0

Question Number 73649    Answers: 1   Comments: 2

find the range f(x)=(2/(6−(√(x+2))))

$${find}\:{the}\:{range} \\ $$$$ \\ $$$${f}\left({x}\right)=\frac{\mathrm{2}}{\mathrm{6}−\sqrt{{x}+\mathrm{2}}} \\ $$

Question Number 73628    Answers: 1   Comments: 0

find coefficient of x^(r ) in the expension of (2x−6y)^(−8)

$${find}\:{coefficient}\:{of}\:{x}^{{r}\:} \:{in}\:{the}\:{expension}\:{of}\: \\ $$$$\:\left(\mathrm{2}{x}−\mathrm{6}{y}\right)^{−\mathrm{8}} \\ $$

Question Number 73620    Answers: 1   Comments: 0

Question Number 73608    Answers: 0   Comments: 5

determiner la valeur exacte de sin(((85Π)/4))

$$\:\mathrm{determiner} \\ $$$$\:\mathrm{la}\:\mathrm{valeur}\:\mathrm{exacte}\:\mathrm{de}\:\mathrm{sin}\left(\frac{\mathrm{85}\Pi}{\mathrm{4}}\right) \\ $$$$ \\ $$

Question Number 73595    Answers: 0   Comments: 5

i ask all of you not to answer any question from www ( = amirley or something like this) (= best) (=azodbek or something like this) this guy is not to help! he misuses your help and deletes his posts as soon as you have answered them.

$${i}\:{ask}\:{all}\:{of}\:{you}\:{not}\:{to}\:{answer}\:{any} \\ $$$${question}\:{from}\:{www} \\ $$$$\left(\:=\:{amirley}\:{or}\:{something}\:{like}\:{this}\right) \\ $$$$\left(=\:{best}\right) \\ $$$$\left(={azodbek}\:{or}\:{something}\:{like}\:{this}\right) \\ $$$${this}\:{guy}\:{is}\:{not}\:{to}\:{help}!\:{he}\:{misuses} \\ $$$${your}\:{help}\:{and}\:{deletes}\:{his}\:{posts}\:{as} \\ $$$${soon}\:{as}\:{you}\:{have}\:{answered}\:{them}. \\ $$

Question Number 73590    Answers: 2   Comments: 2

prove that (_k ^(n+1) )=(_k ^n )+(_(n−1) ^n ) pleas sir help me ?

$${prove}\:{that}\:\left(_{{k}} ^{{n}+\mathrm{1}} \right)=\left(_{{k}} ^{{n}} \right)+\left(_{{n}−\mathrm{1}} ^{{n}} \right) \\ $$$${pleas}\:{sir}\:{help}\:{me}\:? \\ $$

Question Number 73582    Answers: 0   Comments: 2

Could you help me with references in complex analysis please?

$${Could}\:{you}\:{help}\:{me}\:{with}\:{references} \\ $$$${in}\:{complex}\:{analysis}\:{please}? \\ $$

Question Number 73574    Answers: 0   Comments: 1

Question Number 73572    Answers: 0   Comments: 1

determine wether or not the function f,where f(x) = { ((2x + 1, 0≤ x <2)),((7−x, 2 ≤ x < 4)),((((3x)/4) , 4 ≤ x < 6)) :} is continuous in the interval [0,6[

$${determine}\:{wether}\:{or}\:{not}\:{the}\:{function}\:{f},{where} \\ $$$${f}\left({x}\right)\:=\:\begin{cases}{\mathrm{2}{x}\:+\:\mathrm{1},\:\mathrm{0}\leqslant\:{x}\:<\mathrm{2}}\\{\mathrm{7}−{x},\:\:\:\mathrm{2}\:\leqslant\:{x}\:<\:\mathrm{4}}\\{\frac{\mathrm{3}{x}}{\mathrm{4}}\:,\:\:\mathrm{4}\:\leqslant\:{x}\:<\:\mathrm{6}}\end{cases} \\ $$$${is}\:{continuous}\:{in}\:{the}\:{interval}\:\left[\mathrm{0},\mathrm{6}\left[\right.\right. \\ $$

Question Number 73570    Answers: 0   Comments: 1

f : x → { ((1 + x, if x<1)),((2x−1,if x>1)) :} investigate the existence and non existence of the limit of f at the point x =1

$${f}\::\:{x}\:\rightarrow\:\begin{cases}{\mathrm{1}\:+\:{x},\:{if}\:{x}<\mathrm{1}}\\{\mathrm{2}{x}−\mathrm{1},{if}\:{x}>\mathrm{1}}\end{cases} \\ $$$${investigate}\:{the}\:{existence}\:{and}\:{non}\:{existence}\:{of}\:{the} \\ $$$${limit}\:{of}\:{f}\:{at}\:{the}\:{point}\:{x}\:=\mathrm{1} \\ $$

Question Number 73569    Answers: 0   Comments: 2

let f(x) = ((tanx)/(tan2x)) . Find the points of discontinuity of f on [0,2π] and determine wether each duscontinuity is a point discontinuity,a jump discontinuity,or a vertical asymtote

$${let}\:{f}\left({x}\right)\:=\:\frac{{tanx}}{{tan}\mathrm{2}{x}}\:.\:{Find}\:{the}\:{points}\:{of}\:{discontinuity} \\ $$$${of}\:{f}\:{on}\:\left[\mathrm{0},\mathrm{2}\pi\right]\:{and}\:{determine}\:{wether}\:{each}\:{duscontinuity}\:{is} \\ $$$${a}\:{point}\:{discontinuity},{a}\:{jump}\:{discontinuity},{or}\:{a}\:{vertical}\:{asymtote} \\ $$$$ \\ $$

Question Number 73567    Answers: 0   Comments: 2

Determine the value of a and b fir which the function f,defined by f(x) = { ((−2sinx, x < −(π/2))),((asinx + b,−(π/2) ≤ x < (π/2))),((cosx, x > (π/2))) :} is continouos

$${Determine}\:{the}\:{value}\:{of}\:{a}\:{and}\:{b}\:{fir}\:{which}\:{the}\:{function}\:{f},{defined}\:{by} \\ $$$${f}\left({x}\right)\:=\:\begin{cases}{−\mathrm{2}{sinx},\:\:{x}\:<\:−\frac{\pi}{\mathrm{2}}}\\{{asinx}\:+\:{b},−\frac{\pi}{\mathrm{2}}\:\leqslant\:{x}\:<\:\frac{\pi}{\mathrm{2}}}\\{{cosx},\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}\:>\:\frac{\pi}{\mathrm{2}}}\end{cases} \\ $$$${is}\:{continouos} \\ $$

Question Number 73566    Answers: 0   Comments: 3

show that f(x) = ∣x∣ is not differentiable at x=0, where ∣x∣ denotes he absolute value function

$${show}\:{that}\:{f}\left({x}\right)\:=\:\mid{x}\mid\:{is}\:{not}\:{differentiable}\:{at}\:{x}=\mathrm{0},\:{where}\:\mid{x}\mid \\ $$$${denotes}\:{he}\:{absolute}\:{value}\:{function} \\ $$

Question Number 73565    Answers: 0   Comments: 2

investigate the continuity of f ,given by f: x → { ((1−x, if x<1)),((0,if x =1)),((x^2 −3x + 2,if x >1)) :} at the point x =1

$${investigate}\:{the}\:{continuity}\:{of}\:{f}\:,{given}\:{by} \\ $$$${f}:\:{x}\:\rightarrow\:\begin{cases}{\mathrm{1}−{x},\:{if}\:{x}<\mathrm{1}}\\{\mathrm{0},{if}\:{x}\:=\mathrm{1}}\\{{x}^{\mathrm{2}} −\mathrm{3}{x}\:+\:\mathrm{2},{if}\:{x}\:>\mathrm{1}}\end{cases} \\ $$$${at}\:{the}\:{point}\:{x}\:=\mathrm{1} \\ $$$$ \\ $$

Question Number 73561    Answers: 1   Comments: 0

find the value of λ for which f : x → { ((2λ − x, if x < 1)),((λ^2 + x −1, if x > 1)) :} has a limit as x→ 1

$${find}\:{the}\:{value}\:{of}\:\lambda\:{for}\:{which} \\ $$$$\:{f}\::\:{x}\:\rightarrow\:\begin{cases}{\mathrm{2}\lambda\:−\:{x},\:{if}\:{x}\:<\:\mathrm{1}}\\{\lambda^{\mathrm{2}} \:+\:{x}\:−\mathrm{1},\:{if}\:{x}\:>\:\mathrm{1}}\end{cases} \\ $$$${has}\:{a}\:{limit}\:{as}\:{x}\rightarrow\:\mathrm{1} \\ $$

Question Number 73560    Answers: 1   Comments: 1

prove that (1−itanθ)/(i+cotθ)=itanθ pleas sir help me?

$${prove}\:{that}\:\left(\mathrm{1}−{itan}\theta\right)/\left({i}+{cot}\theta\right)={itan}\theta \\ $$$${pleas}\:{sir}\:{help}\:{me}? \\ $$

  Pg 1362      Pg 1363      Pg 1364      Pg 1365      Pg 1366      Pg 1367      Pg 1368      Pg 1369      Pg 1370      Pg 1371   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com