Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1367
Question Number 76272 Answers: 1 Comments: 2
$${Find}\:{the}\:{area}\:{S}\:{of}\:{a}\:{triangle}\:{ABC} \\ $$$${as}\:{a}\:{function}\:{of}\:{the}\:{heights} \\ $$$${h}_{{a}} ,\:{h}_{{b}} \:{and}\:{h}_{{c}} . \\ $$
Question Number 76270 Answers: 0 Comments: 5
Question Number 76265 Answers: 1 Comments: 0
Question Number 76252 Answers: 1 Comments: 1
$${A}\:{triangle}\:{has}\:{an}\:{area}\:{of}\:\mathrm{20}\:{square} \\ $$$${units}\:{and}\:{two}\:{vertices}\:{are}\:\left(\mathrm{3},\mathrm{4}\right)\:{and}\:\left(\mathrm{2},\mathrm{7}\right). \\ $$$${What}\:{is}\:{the}\:{position}\:{of}\:{the}\:{third}\:{vertex}? \\ $$
Question Number 76250 Answers: 0 Comments: 1
Question Number 76248 Answers: 0 Comments: 3
$$\overset{{lim}} {{x}}\rightarrow\overset{\:\:\:\:\left(\frac{{sin}\mathrm{3}{x}}{\mathrm{2}{x}}\right)^{\frac{\mathrm{2}}{\mathrm{5}{x}+\mathrm{1}}} } {\mathrm{0}}=\:?\:\: \\ $$
Question Number 76246 Answers: 2 Comments: 0
$$\mathrm{how}\:\mathrm{to}\:\mathrm{solving}\:\mathrm{x}^{\mathrm{3}} \:+\mathrm{y}^{\mathrm{3}\:} \:=\mathrm{4}\:\mathrm{and}\: \\ $$$$\mathrm{x}×\mathrm{y}\:=\mathrm{1}? \\ $$
Question Number 76229 Answers: 1 Comments: 0
$${Let}\:{P}\left({x}\right)\:{be}\:{polynomial}\:{in}\:{x}\:{with}\:{integral} \\ $$$${coefficients}.\:{If}\:{n}\:{is}\:{a}\:{solution}\:{of}\: \\ $$$${P}\left({x}\right)\equiv\mathrm{0}\left({mod}\:{n}\right)\:,\:{and}\:{a}\equiv{b}\left({mod}\:{n}\right), \\ $$$${prove}\:{that}\:{b}\:{is}\:{also}\:{a}\:{solution}. \\ $$
Question Number 76228 Answers: 1 Comments: 2
$${prove}\:{that}\:\mathrm{6}^{{n}} \:\equiv\:\mathrm{6}\:\left({mod}\:\mathrm{10}\right),\:{for}\:{any}\:{n}\:\in\:{Z}^{\:+} \\ $$
Question Number 76220 Answers: 1 Comments: 1
Question Number 76214 Answers: 3 Comments: 0
$$\mathrm{x}^{\mathrm{2}} +\mathrm{2x}−\mathrm{9}+\frac{\mathrm{9}}{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }=\mathrm{0} \\ $$$$\mathrm{please} \\ $$
Question Number 76213 Answers: 1 Comments: 0
$$\left(\frac{\mathrm{1}}{\mathrm{64}}×\mathrm{5}^{−\mathrm{3}} \right)^{−\frac{\mathrm{1}}{\mathrm{3}}} \\ $$
Question Number 76207 Answers: 4 Comments: 0
$${if}\:{a}_{\mathrm{1}} =\mathrm{1}\:{and}\:{a}_{{n}+\mathrm{1}} =\mathrm{3}{a}_{{n}} +{n}^{\mathrm{2}} \\ $$$${find}\:{a}_{{n}} =? \\ $$
Question Number 76200 Answers: 0 Comments: 2
Question Number 76194 Answers: 0 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{cos}\left({x}^{\mathrm{2}} \right)}{{x}^{\mathrm{4}} −{x}^{\mathrm{2}} \:+\mathrm{1}}{dx} \\ $$
Question Number 76193 Answers: 1 Comments: 4
$${calculate}\:\int\:\:\left({x}^{\mathrm{2}} −\mathrm{1}\right){sh}\left(\mathrm{3}{x}\right){dx} \\ $$
Question Number 76192 Answers: 1 Comments: 0
$${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\frac{{arctan}\left({sin}\left(\mathrm{2}{x}\right)\right)−{sin}\left({arctan}\left(\mathrm{2}{x}\right)\right)}{{x}^{\mathrm{2}} } \\ $$
Question Number 76191 Answers: 1 Comments: 0
$${find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\:\frac{{e}^{{x}} −{e}^{\left[{x}\right]} }{{x}} \\ $$
Question Number 76190 Answers: 0 Comments: 2
$${let}\:{f}\left({x}\right)=\frac{{arctan}\left(\mathrm{1}+{x}\right)}{\mathrm{2}+{x}} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{\left({n}\right)} \left({x}\right)\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie}. \\ $$
Question Number 76232 Answers: 2 Comments: 2
$${how}\:{do}\:{we}\:{find} \\ $$$$\:\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:{sinh}^{−\mathrm{1}} {x}\:{dx}\:{and}\:\:\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\mathrm{cosh}\:^{−\mathrm{1}} {xdx} \\ $$
Question Number 76176 Answers: 0 Comments: 4
Question Number 76171 Answers: 0 Comments: 0
Question Number 76169 Answers: 2 Comments: 0
Question Number 76167 Answers: 3 Comments: 0
Question Number 76245 Answers: 1 Comments: 0
$$\mathrm{The}\:\mathrm{lines}\:{ax}+\mathrm{2}{y}+\mathrm{1}=\mathrm{0},\:{bx}+\mathrm{3}{y}+\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{and}\:{cx}+\mathrm{4}{y}+\mathrm{1}=\mathrm{0}\:\mathrm{are}\:\mathrm{concurrent} \\ $$$$\mathrm{if}\:{a},\:{b},\:{c}\:\mathrm{are}\:\mathrm{in}\:\mathrm{G}.\mathrm{P}.\:?? \\ $$
Question Number 76153 Answers: 0 Comments: 0
Pg 1362 Pg 1363 Pg 1364 Pg 1365 Pg 1366 Pg 1367 Pg 1368 Pg 1369 Pg 1370 Pg 1371
Terms of Service
Privacy Policy
Contact: info@tinkutara.com