Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1367

Question Number 76272    Answers: 1   Comments: 2

Find the area S of a triangle ABC as a function of the heights h_a , h_b and h_c .

$${Find}\:{the}\:{area}\:{S}\:{of}\:{a}\:{triangle}\:{ABC} \\ $$$${as}\:{a}\:{function}\:{of}\:{the}\:{heights} \\ $$$${h}_{{a}} ,\:{h}_{{b}} \:{and}\:{h}_{{c}} . \\ $$

Question Number 76270    Answers: 0   Comments: 5

Question Number 76265    Answers: 1   Comments: 0

Question Number 76252    Answers: 1   Comments: 1

A triangle has an area of 20 square units and two vertices are (3,4) and (2,7). What is the position of the third vertex?

$${A}\:{triangle}\:{has}\:{an}\:{area}\:{of}\:\mathrm{20}\:{square} \\ $$$${units}\:{and}\:{two}\:{vertices}\:{are}\:\left(\mathrm{3},\mathrm{4}\right)\:{and}\:\left(\mathrm{2},\mathrm{7}\right). \\ $$$${What}\:{is}\:{the}\:{position}\:{of}\:{the}\:{third}\:{vertex}? \\ $$

Question Number 76250    Answers: 0   Comments: 1

Question Number 76248    Answers: 0   Comments: 3

x^(lim) →0^( (((sin3x)/(2x)))^(2/(5x+1)) ) = ?

$$\overset{{lim}} {{x}}\rightarrow\overset{\:\:\:\:\left(\frac{{sin}\mathrm{3}{x}}{\mathrm{2}{x}}\right)^{\frac{\mathrm{2}}{\mathrm{5}{x}+\mathrm{1}}} } {\mathrm{0}}=\:?\:\: \\ $$

Question Number 76246    Answers: 2   Comments: 0

how to solving x^3 +y^(3 ) =4 and x×y =1?

$$\mathrm{how}\:\mathrm{to}\:\mathrm{solving}\:\mathrm{x}^{\mathrm{3}} \:+\mathrm{y}^{\mathrm{3}\:} \:=\mathrm{4}\:\mathrm{and}\: \\ $$$$\mathrm{x}×\mathrm{y}\:=\mathrm{1}? \\ $$

Question Number 76229    Answers: 1   Comments: 0

Let P(x) be polynomial in x with integral coefficients. If n is a solution of P(x)≡0(mod n) , and a≡b(mod n), prove that b is also a solution.

$${Let}\:{P}\left({x}\right)\:{be}\:{polynomial}\:{in}\:{x}\:{with}\:{integral} \\ $$$${coefficients}.\:{If}\:{n}\:{is}\:{a}\:{solution}\:{of}\: \\ $$$${P}\left({x}\right)\equiv\mathrm{0}\left({mod}\:{n}\right)\:,\:{and}\:{a}\equiv{b}\left({mod}\:{n}\right), \\ $$$${prove}\:{that}\:{b}\:{is}\:{also}\:{a}\:{solution}. \\ $$

Question Number 76228    Answers: 1   Comments: 2

prove that 6^n ≡ 6 (mod 10), for any n ∈ Z^( +)

$${prove}\:{that}\:\mathrm{6}^{{n}} \:\equiv\:\mathrm{6}\:\left({mod}\:\mathrm{10}\right),\:{for}\:{any}\:{n}\:\in\:{Z}^{\:+} \\ $$

Question Number 76220    Answers: 1   Comments: 1

Question Number 76214    Answers: 3   Comments: 0

x^2 +2x−9+(9/((x+1)^2 ))=0 please

$$\mathrm{x}^{\mathrm{2}} +\mathrm{2x}−\mathrm{9}+\frac{\mathrm{9}}{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }=\mathrm{0} \\ $$$$\mathrm{please} \\ $$

Question Number 76213    Answers: 1   Comments: 0

((1/(64))×5^(−3) )^(−(1/3))

$$\left(\frac{\mathrm{1}}{\mathrm{64}}×\mathrm{5}^{−\mathrm{3}} \right)^{−\frac{\mathrm{1}}{\mathrm{3}}} \\ $$

Question Number 76207    Answers: 4   Comments: 0

if a_1 =1 and a_(n+1) =3a_n +n^2 find a_n =?

$${if}\:{a}_{\mathrm{1}} =\mathrm{1}\:{and}\:{a}_{{n}+\mathrm{1}} =\mathrm{3}{a}_{{n}} +{n}^{\mathrm{2}} \\ $$$${find}\:{a}_{{n}} =? \\ $$

Question Number 76200    Answers: 0   Comments: 2

Question Number 76194    Answers: 0   Comments: 1

calculate ∫_0 ^∞ ((cos(x^2 ))/(x^4 −x^2 +1))dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{cos}\left({x}^{\mathrm{2}} \right)}{{x}^{\mathrm{4}} −{x}^{\mathrm{2}} \:+\mathrm{1}}{dx} \\ $$

Question Number 76193    Answers: 1   Comments: 4

calculate ∫ (x^2 −1)sh(3x)dx

$${calculate}\:\int\:\:\left({x}^{\mathrm{2}} −\mathrm{1}\right){sh}\left(\mathrm{3}{x}\right){dx} \\ $$

Question Number 76192    Answers: 1   Comments: 0

calculate lim_(x→0) ((arctan(sin(2x))−sin(arctan(2x)))/x^2 )

$${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\frac{{arctan}\left({sin}\left(\mathrm{2}{x}\right)\right)−{sin}\left({arctan}\left(\mathrm{2}{x}\right)\right)}{{x}^{\mathrm{2}} } \\ $$

Question Number 76191    Answers: 1   Comments: 0

find lim_(x→0) ((e^x −e^([x]) )/x)

$${find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\:\frac{{e}^{{x}} −{e}^{\left[{x}\right]} }{{x}} \\ $$

Question Number 76190    Answers: 0   Comments: 2

let f(x)=((arctan(1+x))/(2+x)) 1) calculate f^((n)) (x) and f^((n)) (0) 2) developp f at integr serie.

$${let}\:{f}\left({x}\right)=\frac{{arctan}\left(\mathrm{1}+{x}\right)}{\mathrm{2}+{x}} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{\left({n}\right)} \left({x}\right)\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie}. \\ $$

Question Number 76232    Answers: 2   Comments: 2

how do we find ∫_0 ^(π/2) sinh^(−1) x dx and ∫_0 ^(π/2) cosh^(−1) xdx

$${how}\:{do}\:{we}\:{find} \\ $$$$\:\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:{sinh}^{−\mathrm{1}} {x}\:{dx}\:{and}\:\:\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\mathrm{cosh}\:^{−\mathrm{1}} {xdx} \\ $$

Question Number 76176    Answers: 0   Comments: 4

Question Number 76171    Answers: 0   Comments: 0

Question Number 76169    Answers: 2   Comments: 0

Question Number 76167    Answers: 3   Comments: 0

Question Number 76245    Answers: 1   Comments: 0

The lines ax+2y+1=0, bx+3y+1=0 and cx+4y+1=0 are concurrent if a, b, c are in G.P. ??

$$\mathrm{The}\:\mathrm{lines}\:{ax}+\mathrm{2}{y}+\mathrm{1}=\mathrm{0},\:{bx}+\mathrm{3}{y}+\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{and}\:{cx}+\mathrm{4}{y}+\mathrm{1}=\mathrm{0}\:\mathrm{are}\:\mathrm{concurrent} \\ $$$$\mathrm{if}\:{a},\:{b},\:{c}\:\mathrm{are}\:\mathrm{in}\:\mathrm{G}.\mathrm{P}.\:?? \\ $$

Question Number 76153    Answers: 0   Comments: 0

  Pg 1362      Pg 1363      Pg 1364      Pg 1365      Pg 1366      Pg 1367      Pg 1368      Pg 1369      Pg 1370      Pg 1371   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com