Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1367

Question Number 76200    Answers: 0   Comments: 2

Question Number 76194    Answers: 0   Comments: 1

calculate ∫_0 ^∞ ((cos(x^2 ))/(x^4 −x^2 +1))dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{cos}\left({x}^{\mathrm{2}} \right)}{{x}^{\mathrm{4}} −{x}^{\mathrm{2}} \:+\mathrm{1}}{dx} \\ $$

Question Number 76193    Answers: 1   Comments: 4

calculate ∫ (x^2 −1)sh(3x)dx

$${calculate}\:\int\:\:\left({x}^{\mathrm{2}} −\mathrm{1}\right){sh}\left(\mathrm{3}{x}\right){dx} \\ $$

Question Number 76192    Answers: 1   Comments: 0

calculate lim_(x→0) ((arctan(sin(2x))−sin(arctan(2x)))/x^2 )

$${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\frac{{arctan}\left({sin}\left(\mathrm{2}{x}\right)\right)−{sin}\left({arctan}\left(\mathrm{2}{x}\right)\right)}{{x}^{\mathrm{2}} } \\ $$

Question Number 76191    Answers: 1   Comments: 0

find lim_(x→0) ((e^x −e^([x]) )/x)

$${find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\:\frac{{e}^{{x}} −{e}^{\left[{x}\right]} }{{x}} \\ $$

Question Number 76190    Answers: 0   Comments: 2

let f(x)=((arctan(1+x))/(2+x)) 1) calculate f^((n)) (x) and f^((n)) (0) 2) developp f at integr serie.

$${let}\:{f}\left({x}\right)=\frac{{arctan}\left(\mathrm{1}+{x}\right)}{\mathrm{2}+{x}} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{\left({n}\right)} \left({x}\right)\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie}. \\ $$

Question Number 76232    Answers: 2   Comments: 2

how do we find ∫_0 ^(π/2) sinh^(−1) x dx and ∫_0 ^(π/2) cosh^(−1) xdx

$${how}\:{do}\:{we}\:{find} \\ $$$$\:\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:{sinh}^{−\mathrm{1}} {x}\:{dx}\:{and}\:\:\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\mathrm{cosh}\:^{−\mathrm{1}} {xdx} \\ $$

Question Number 76176    Answers: 0   Comments: 4

Question Number 76171    Answers: 0   Comments: 0

Question Number 76169    Answers: 2   Comments: 0

Question Number 76167    Answers: 3   Comments: 0

Question Number 76245    Answers: 1   Comments: 0

The lines ax+2y+1=0, bx+3y+1=0 and cx+4y+1=0 are concurrent if a, b, c are in G.P. ??

$$\mathrm{The}\:\mathrm{lines}\:{ax}+\mathrm{2}{y}+\mathrm{1}=\mathrm{0},\:{bx}+\mathrm{3}{y}+\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{and}\:{cx}+\mathrm{4}{y}+\mathrm{1}=\mathrm{0}\:\mathrm{are}\:\mathrm{concurrent} \\ $$$$\mathrm{if}\:{a},\:{b},\:{c}\:\mathrm{are}\:\mathrm{in}\:\mathrm{G}.\mathrm{P}.\:?? \\ $$

Question Number 76153    Answers: 0   Comments: 0

Question Number 76151    Answers: 0   Comments: 6

lim_(x→∞) x^k e^(−4x) , k>0

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{x}^{{k}} {e}^{−\mathrm{4}{x}} ,\:{k}>\mathrm{0} \\ $$

Question Number 76146    Answers: 1   Comments: 5

Question Number 76143    Answers: 2   Comments: 1

Question Number 76127    Answers: 0   Comments: 0

Question Number 76126    Answers: 1   Comments: 9

Question Number 76112    Answers: 1   Comments: 0

If the sides of a triangle are consecutive integers and the maximum angle is twice the minimum, determine the sides of the triangle.

$${If}\:{the}\:{sides}\:{of}\:{a}\:{triangle}\:{are}\:{consecutive} \\ $$$${integers}\:{and}\:{the}\:{maximum}\:{angle} \\ $$$${is}\:{twice}\:{the}\:{minimum},\:{determine} \\ $$$${the}\:{sides}\:{of}\:{the}\:{triangle}. \\ $$

Question Number 76110    Answers: 1   Comments: 0

hello solve in R tanx>(√3) please explain me if possible.

$${hello}\:\mathrm{solve}\:\mathrm{in}\:\mathbb{R} \\ $$$$\mathrm{tan}{x}>\sqrt{\mathrm{3}} \\ $$$${please}\:{explain}\:{me}\:{if}\:{possible}. \\ $$

Question Number 76108    Answers: 1   Comments: 1

Question Number 76098    Answers: 2   Comments: 0

Question Number 76122    Answers: 4   Comments: 0

Question Number 76090    Answers: 1   Comments: 1

Question Number 76088    Answers: 0   Comments: 2

Question Number 76087    Answers: 1   Comments: 0

  Pg 1362      Pg 1363      Pg 1364      Pg 1365      Pg 1366      Pg 1367      Pg 1368      Pg 1369      Pg 1370      Pg 1371   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com