Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1367

Question Number 74782    Answers: 1   Comments: 2

Question Number 74776    Answers: 1   Comments: 0

Question Number 74774    Answers: 0   Comments: 0

Question Number 74766    Answers: 0   Comments: 2

Question Number 74753    Answers: 1   Comments: 4

evaluate 5^(√(log 7_5 )) − 7^(√(log 5_7 ))

$${evaluate}\:\mathrm{5}^{\sqrt{\mathrm{log}\:\mathrm{7}_{\mathrm{5}} }} \:−\:\mathrm{7}^{\sqrt{\mathrm{log}\:\mathrm{5}_{\mathrm{7}} }} \\ $$

Question Number 74748    Answers: 1   Comments: 3

Question Number 74747    Answers: 1   Comments: 0

Question Number 74742    Answers: 2   Comments: 1

If α and β are the roots of x^2 − x + 1 = 0, Find α^(23) + β^(23) without demoivre′s theorem.

$$\mathrm{If}\:\:\alpha\:\mathrm{and}\:\beta\:\mathrm{are}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\:\:\:\:\mathrm{x}^{\mathrm{2}} \:−\:\mathrm{x}\:+\:\mathrm{1}\:\:\:=\:\:\mathrm{0},\:\: \\ $$$$\mathrm{Find}\:\:\:\:\:\:\:\:\:\alpha^{\mathrm{23}} \:+\:\beta^{\mathrm{23}} \:\:\:\:\:\mathrm{without}\:\mathrm{demoivre}'\mathrm{s}\:\mathrm{theorem}. \\ $$

Question Number 74723    Answers: 1   Comments: 1

3xy+x^2 +y^2 =5 find the second derivative

$$\mathrm{3}{xy}+{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{5} \\ $$$${find}\:{the}\:{second}\:{derivative} \\ $$

Question Number 74720    Answers: 2   Comments: 5

Question Number 74716    Answers: 1   Comments: 0

Question Number 74713    Answers: 1   Comments: 1

Question Number 74712    Answers: 0   Comments: 2

Question Number 74711    Answers: 0   Comments: 0

Question Number 74944    Answers: 0   Comments: 0

∫(e^(−cos(2x)) /(sin^2 (x))) dx

$$\int\frac{{e}^{−{cos}\left(\mathrm{2}{x}\right)} }{{sin}^{\mathrm{2}} \left({x}\right)}\:{dx} \\ $$

Question Number 74726    Answers: 1   Comments: 3

Question Number 74703    Answers: 1   Comments: 0

let b and r be two positive prime numbers such that b≠r and b×r is a divisor of 138. Consider an arithmetic progression in which the first term is b, the ratio is r and the fourth term is 71. What is the value of b+r?

$${let}\:\boldsymbol{{b}}\:{and}\:\boldsymbol{{r}}\:{be}\:{two}\:{positive}\:{prime}\: \\ $$$${numbers}\:{such}\:{that}\:{b}\neq{r}\:{and}\:{b}×{r}\:{is} \\ $$$${a}\:{divisor}\:{of}\:\mathrm{138}.\:{Consider}\:{an}\: \\ $$$${arithmetic}\:{progression}\:{in}\:{which} \\ $$$${the}\:{first}\:{term}\:{is}\:\boldsymbol{{b}},\:{the}\:{ratio}\:{is}\:\boldsymbol{{r}} \\ $$$${and}\:{the}\:{fourth}\:{term}\:{is}\:\mathrm{71}.\:{What}\:{is}\:{the} \\ $$$${value}\:{of}\:\boldsymbol{{b}}+\boldsymbol{{r}}? \\ $$

Question Number 74698    Answers: 2   Comments: 1

Question Number 74778    Answers: 0   Comments: 0

Question Number 74688    Answers: 0   Comments: 0

y = f(x) Can we tranform this into a real life problem and solve with several condition.

$$\mathrm{y}\:\:=\:\:\mathrm{f}\left(\mathrm{x}\right) \\ $$$$\mathrm{Can}\:\mathrm{we}\:\mathrm{tranform}\:\mathrm{this}\:\mathrm{into}\:\mathrm{a}\:\mathrm{real}\:\mathrm{life}\:\mathrm{problem}\:\mathrm{and}\:\mathrm{solve}\:\mathrm{with} \\ $$$$\mathrm{several}\:\mathrm{condition}. \\ $$

Question Number 74675    Answers: 0   Comments: 0

Question Number 74697    Answers: 1   Comments: 0

Question Number 74655    Answers: 1   Comments: 1

.

$$. \\ $$

Question Number 74663    Answers: 1   Comments: 0

If x^x y^y z^z = c show that at x = y = z (∂^2 z/(∂x∂y)) = − (x log ex)^(−1)

$$\mathrm{If}\:\:\:\:\mathrm{x}^{\mathrm{x}} \:\mathrm{y}^{\mathrm{y}} \:\mathrm{z}^{\mathrm{z}} \:\:\:=\:\:\:\mathrm{c}\:\:\:\:\:\:\:\mathrm{show}\:\mathrm{that}\:\mathrm{at}\:\:\:\:\:\mathrm{x}\:\:=\:\:\mathrm{y}\:\:=\:\:\mathrm{z} \\ $$$$\:\:\:\:\:\:\frac{\partial^{\mathrm{2}} \mathrm{z}}{\partial\mathrm{x}\partial\mathrm{y}}\:\:\:=\:\:\:−\:\left(\mathrm{x}\:\mathrm{log}\:\mathrm{ex}\right)^{−\mathrm{1}} \\ $$

Question Number 74649    Answers: 2   Comments: 1

Question Number 74647    Answers: 0   Comments: 2

  Pg 1362      Pg 1363      Pg 1364      Pg 1365      Pg 1366      Pg 1367      Pg 1368      Pg 1369      Pg 1370      Pg 1371   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com