Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 136

Question Number 207845    Answers: 2   Comments: 0

Find: 1 + (1/(1+2)) + (1/(1+2+3)) +...+ (1/(1+2+3+...+40))

$$\mathrm{Find}: \\ $$$$\mathrm{1}\:+\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}}\:+\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}+\mathrm{3}}\:+...+\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}+\mathrm{3}+...+\mathrm{40}} \\ $$

Question Number 207842    Answers: 1   Comments: 0

(−1)^∞ =?

$$\left(−\mathrm{1}\right)^{\infty} =? \\ $$

Question Number 207834    Answers: 1   Comments: 0

$$\:\:\:\:\underbrace{\:} \\ $$$$ \\ $$

Question Number 207833    Answers: 0   Comments: 0

Question Number 207832    Answers: 1   Comments: 1

Prove that Sgn(0)=0

$${Prove}\:{that}\:{Sgn}\left(\mathrm{0}\right)=\mathrm{0} \\ $$

Question Number 207825    Answers: 3   Comments: 0

calculer (1−a)^(k ) :k∈N

$${calculer}\:\left(\mathrm{1}−{a}\right)^{{k}\:\:} \::{k}\in{N} \\ $$

Question Number 207816    Answers: 1   Comments: 1

lim_(x→2) ((((x^2 +4))^(1/3) −(√(x^3 −4)))/( (√(x^2 −4))−((x−2))^(1/3) ))

$$\:\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\:\frac{\sqrt[{\mathrm{3}}]{\mathrm{x}^{\mathrm{2}} +\mathrm{4}}−\sqrt{\mathrm{x}^{\mathrm{3}} −\mathrm{4}}}{\:\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{4}}−\sqrt[{\mathrm{3}}]{\mathrm{x}−\mathrm{2}}} \\ $$

Question Number 207814    Answers: 0   Comments: 1

Some guys are no caught by electricity what′s the reason?

$${Some}\:{guys}\:{are}\:{no}\:{caught}\:{by}\:{electricity} \\ $$$${what}'{s}\:{the}\:{reason}? \\ $$

Question Number 207813    Answers: 1   Comments: 1

the word of atom is meant no dividable however atom is dividable, why we should use the atom word nowadays?

$${the}\:{word}\:{of}\:{atom}\:{is}\:{meant}\:{no}\:{dividable} \\ $$$${however}\:{atom}\:{is}\:{dividable},\:{why}\:{we} \\ $$$${should}\:{use}\:{the}\:{atom}\:{word}\:{nowadays}? \\ $$

Question Number 207812    Answers: 1   Comments: 0

prove that ((vector)/(scalar))=vector

$${prove}\:{that}\:\frac{{vector}}{{scalar}}={vector} \\ $$

Question Number 207810    Answers: 0   Comments: 4

what is the difference between Domain and Codomain?

$${what}\:{is}\:{the}\:{difference}\:{between}\: \\ $$$${Domain}\:{and}\:{Codomain}? \\ $$

Question Number 207805    Answers: 0   Comments: 1

I′ve changed my handset, now unable to view saved equations. How to access saved equatios in new handset?

$$\mathrm{I}'\mathrm{ve}\:\mathrm{changed}\:\mathrm{my}\:\mathrm{handset},\:\mathrm{now}\:\mathrm{unable}\:\mathrm{to}\:\mathrm{view}\:\mathrm{saved}\:\mathrm{equations}. \\ $$$$\mathrm{How}\:\mathrm{to}\:\mathrm{access}\:\mathrm{saved}\:\mathrm{equatios}\:\mathrm{in}\:\mathrm{new}\:\mathrm{handset}? \\ $$

Question Number 207801    Answers: 1   Comments: 1

lim_(t→∞) ∫_0 ^( π) ((sin (tx))/x) dx = ∙∙∙

$$\underset{{t}\rightarrow\infty} {\mathrm{lim}}\:\:\underset{\mathrm{0}} {\overset{\:\:\:\:\:\:\pi} {\int}}\:\:\frac{\mathrm{sin}\:\left(\mathrm{t}{x}\right)}{{x}}\:{dx}\:\:=\:\centerdot\centerdot\centerdot \\ $$

Question Number 207789    Answers: 1   Comments: 0

∀r∈R: H_r =∫_0 ^1 ((t^r −1)/(t−1))dt H_(r+2) −H_r =1 r=?

$$\forall{r}\in\mathbb{R}:\:{H}_{{r}} =\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{{t}^{{r}} −\mathrm{1}}{{t}−\mathrm{1}}{dt} \\ $$$${H}_{{r}+\mathrm{2}} −{H}_{{r}} =\mathrm{1} \\ $$$${r}=? \\ $$

Question Number 207787    Answers: 1   Comments: 0

n married couples are invited to a dance party. for the first dance n paires are radomly selected. what′s the probability that no woman dances with her own husband? 1) if a pair must be of different genders. 2) if a pair can also be of the same gender.

$$\boldsymbol{{n}}\:{married}\:{couples}\:{are}\:{invited}\:{to} \\ $$$${a}\:{dance}\:{party}.\:{for}\:{the}\:{first}\:{dance} \\ $$$$\boldsymbol{{n}}\:{paires}\:{are}\:{radomly}\:{selected}.\: \\ $$$${what}'{s}\:{the}\:{probability}\:{that}\:{no}\:{woman} \\ $$$${dances}\:{with}\:{her}\:{own}\:{husband}? \\ $$$$\left.\mathrm{1}\right)\:{if}\:{a}\:{pair}\:{must}\:{be}\:{of}\:{different} \\ $$$$\:\:\:\:\:{genders}. \\ $$$$\left.\mathrm{2}\right)\:{if}\:{a}\:{pair}\:{can}\:{also}\:{be}\:{of}\:{the}\:{same}\: \\ $$$$\:\:\:\:\:{gender}. \\ $$

Question Number 207779    Answers: 1   Comments: 0

Question Number 207774    Answers: 1   Comments: 4

Question Number 207771    Answers: 1   Comments: 0

Simplify: (((b)^(1/4) (√c) − (c)^(1/4) (√b))/( (b)^(1/4) (√c) − (c)^(1/4) )) = ?

$$\mathrm{Simplify}:\:\:\:\:\:\frac{\sqrt[{\mathrm{4}}]{\boldsymbol{\mathrm{b}}}\:\:\sqrt{\boldsymbol{\mathrm{c}}}\:\:−\:\:\sqrt[{\mathrm{4}}]{\boldsymbol{\mathrm{c}}}\:\:\sqrt{\boldsymbol{\mathrm{b}}}}{\:\sqrt[{\mathrm{4}}]{\boldsymbol{\mathrm{b}}}\:\:\sqrt{\boldsymbol{\mathrm{c}}}\:\:−\:\:\sqrt[{\mathrm{4}}]{\boldsymbol{\mathrm{c}}}}\:\:=\:\:? \\ $$

Question Number 207769    Answers: 1   Comments: 1

Question Number 207764    Answers: 3   Comments: 0

Question Number 207753    Answers: 1   Comments: 0

Question Number 207752    Answers: 1   Comments: 3

Two ships have the same berth in a port. It is known that the arrival times of the two ships are independent and have the same probability of docking on a Sunday (00.00−24.00) If the berth time of the first ship is 2 hours and the berth time of the second ship is 4 hours, the probability that one ship will have to wait until the berth can be used is □ ((67)/(144)) □ ((67)/(288)) □ (1/4) □((33)/(144))

$$\:\mathrm{Two}\:\mathrm{ships}\:\mathrm{have}\:\mathrm{the}\:\mathrm{same}\:\mathrm{berth}\: \\ $$$$\:\mathrm{in}\:\mathrm{a}\:\mathrm{port}.\:\mathrm{It}\:\mathrm{is}\:\mathrm{known}\:\mathrm{that}\:\mathrm{the}\: \\ $$$$\:\mathrm{arrival}\:\mathrm{times}\:\mathrm{of}\:\mathrm{the}\:\mathrm{two}\:\mathrm{ships}\: \\ $$$$\:\mathrm{are}\:\mathrm{independent}\:\mathrm{and}\:\mathrm{have}\:\mathrm{the}\: \\ $$$$\:\mathrm{same}\:\mathrm{probability}\:\mathrm{of}\:\mathrm{docking}\: \\ $$$$\mathrm{on}\:\mathrm{a}\:\mathrm{Sunday}\:\left(\mathrm{00}.\mathrm{00}−\mathrm{24}.\mathrm{00}\right) \\ $$$$\:\mathrm{If}\:\mathrm{the}\:\mathrm{berth}\:\mathrm{time}\:\mathrm{of}\:\mathrm{the}\:\mathrm{first}\:\mathrm{ship} \\ $$$$\:\mathrm{is}\:\mathrm{2}\:\mathrm{hours}\:\mathrm{and}\:\mathrm{the}\:\mathrm{berth}\:\mathrm{time} \\ $$$$\:\mathrm{of}\:\mathrm{the}\:\mathrm{second}\:\mathrm{ship}\:\mathrm{is}\:\mathrm{4}\:\mathrm{hours},\: \\ $$$$\:\mathrm{the}\:\mathrm{probability}\:\mathrm{that}\:\mathrm{one}\:\mathrm{ship} \\ $$$$\:\mathrm{will}\:\mathrm{have}\:\mathrm{to}\:\mathrm{wait}\:\mathrm{until}\:\mathrm{the} \\ $$$$\:\mathrm{berth}\:\mathrm{can}\:\mathrm{be}\:\mathrm{used}\:\mathrm{is}\: \\ $$$$\:\Box\:\frac{\mathrm{67}}{\mathrm{144}}\:\:\:\:\:\Box\:\frac{\mathrm{67}}{\mathrm{288}}\:\:\:\:\Box\:\frac{\mathrm{1}}{\mathrm{4}}\:\:\:\:\Box\frac{\mathrm{33}}{\mathrm{144}} \\ $$

Question Number 207751    Answers: 0   Comments: 0

It is known that a balanced 6−sided dice originally had 2,3,4,5,6 and 7. The dice wre thrown once and the result was observed. If an odd numbers appears, than the number is replaced with the number 8. However, if an even number appears , the number is replaced with the number 1. Then the dice whose dice have been replaced are thrown again, the probability of an odd dice odd dice appearing is □ (1/3) □ (2/3) □ (1/2) □ 1

$$\:\:\mathrm{It}\:\mathrm{is}\:\mathrm{known}\:\mathrm{that}\:\mathrm{a}\:\mathrm{balanced}\:\mathrm{6}−\mathrm{sided}\: \\ $$$$\:\mathrm{dice}\:\mathrm{originally}\:\mathrm{had}\:\mathrm{2},\mathrm{3},\mathrm{4},\mathrm{5},\mathrm{6}\:\mathrm{and}\:\mathrm{7}. \\ $$$$\:\mathrm{The}\:\mathrm{dice}\:\mathrm{wre}\:\mathrm{thrown}\:\mathrm{once}\:\mathrm{and}\: \\ $$$$\:\mathrm{the}\:\mathrm{result}\:\mathrm{was}\:\mathrm{observed}.\:\mathrm{If}\:\mathrm{an}\: \\ $$$$\mathrm{odd}\:\mathrm{numbers}\:\mathrm{appears},\:\mathrm{than}\:\mathrm{the}\: \\ $$$$\:\mathrm{number}\:\mathrm{is}\:\mathrm{replaced}\:\mathrm{with}\:\mathrm{the}\: \\ $$$$\:\mathrm{number}\:\mathrm{8}.\:\mathrm{However},\:\mathrm{if}\:\mathrm{an}\:\mathrm{even}\: \\ $$$$\:\mathrm{number}\:\mathrm{appears}\:,\:\mathrm{the}\:\mathrm{number} \\ $$$$\:\mathrm{is}\:\mathrm{replaced}\:\mathrm{with}\:\mathrm{the}\:\mathrm{number}\:\mathrm{1}. \\ $$$$\:\mathrm{Then}\:\mathrm{the}\:\mathrm{dice}\:\mathrm{whose}\:\mathrm{dice}\:\mathrm{have}\: \\ $$$$\:\mathrm{been}\:\mathrm{replaced}\:\mathrm{are}\:\mathrm{thrown}\:\mathrm{again},\: \\ $$$$\:\mathrm{the}\:\mathrm{probability}\:\mathrm{of}\:\mathrm{an}\:\mathrm{odd}\:\mathrm{dice}\: \\ $$$$\:\mathrm{odd}\:\mathrm{dice}\:\mathrm{appearing}\:\mathrm{is}\: \\ $$$$\:\:\Box\:\frac{\mathrm{1}}{\mathrm{3}}\:\:\:\Box\:\frac{\mathrm{2}}{\mathrm{3}}\:\:\:\:\:\Box\:\frac{\mathrm{1}}{\mathrm{2}}\:\:\:\:\Box\:\mathrm{1}\: \\ $$

Question Number 207747    Answers: 3   Comments: 0

find the value of y given that y^(y ) =3^(y+9)

$${find}\:{the}\:{value}\:{of}\:{y}\:{given}\:{that}\:{y}^{{y}\:} =\mathrm{3}^{{y}+\mathrm{9}} \\ $$

Question Number 207738    Answers: 2   Comments: 0

Question Number 208158    Answers: 1   Comments: 0

X, Y and Z are points on the sides AB, BC and AC of the triangle ABC, such that AX:XB =4:3, BY:YC=2:3, CZ:ZA=2:1. Find the ratio of the area of the triangle XYZ to that of triangle ABC.

$${X},\:{Y}\:{and}\:{Z}\:{are}\:{points}\:{on}\:{the}\:{sides}\:{AB}, \\ $$$${BC}\:{and}\:{AC}\:{of}\:{the}\:{triangle}\:{ABC},\:{such} \\ $$$${that}\:{AX}:{XB}\:=\mathrm{4}:\mathrm{3},\:{BY}:{YC}=\mathrm{2}:\mathrm{3},\: \\ $$$${CZ}:{ZA}=\mathrm{2}:\mathrm{1}.\:{Find}\:{the}\:{ratio}\:{of}\:{the}\:{area} \\ $$$${of}\:{the}\:{triangle}\:{XYZ}\:{to}\:{that}\:{of}\:{triangle} \\ $$$${ABC}. \\ $$

  Pg 131      Pg 132      Pg 133      Pg 134      Pg 135      Pg 136      Pg 137      Pg 138      Pg 139      Pg 140   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com