Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1354

Question Number 76952    Answers: 1   Comments: 0

show that (√(1+ 2017×2018×2019×2020 )) ∈ N

$$\mathrm{show}\:\mathrm{that}\: \\ $$$$\sqrt{\mathrm{1}+\:\mathrm{2017}×\mathrm{2018}×\mathrm{2019}×\mathrm{2020}\:}\:\in\:\mathbb{N} \\ $$

Question Number 76949    Answers: 0   Comments: 0

Question Number 76948    Answers: 1   Comments: 0

Question Number 76941    Answers: 0   Comments: 4

We usually have to write the date in this form 01/01/2020 to mean the 1^(st) january 2020 What is the first date that is written in this form with eight different figures ? an example : 25/09/1873 “i wish you a sweet and happy new year to all of you”

$$\mathrm{We}\:\mathrm{usually}\:\mathrm{have}\:\mathrm{to}\:\mathrm{write}\:\mathrm{the}\:\mathrm{date}\:\mathrm{in}\:\mathrm{this}\:\mathrm{form}\:\mathrm{01}/\mathrm{01}/\mathrm{2020} \\ $$$$\mathrm{to}\:\mathrm{mean}\:\mathrm{the}\:\mathrm{1}^{\mathrm{st}} \:\mathrm{january}\:\mathrm{2020}\: \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{first}\:\mathrm{date}\:\mathrm{that}\:\mathrm{is}\:\mathrm{written}\:\mathrm{in}\:\mathrm{this}\:\mathrm{form}\:\mathrm{with}\:\mathrm{eight}\:\mathrm{different}\:\mathrm{figures}\:? \\ $$$$\mathrm{an}\:\mathrm{example}\::\:\mathrm{25}/\mathrm{09}/\mathrm{1873}\:\: \\ $$$$``\mathrm{i}\:\mathrm{wish}\:\mathrm{you}\:\mathrm{a}\:\mathrm{sweet}\:\mathrm{and}\:\mathrm{happy}\:\mathrm{new}\:\mathrm{year}\:\mathrm{to}\:\mathrm{all}\:\mathrm{of}\:\mathrm{you}'' \\ $$

Question Number 78027    Answers: 1   Comments: 1

Question Number 76929    Answers: 2   Comments: 0

∫(1/(√(sin^3 x(sin(a+x)) )))

$$\int\frac{\mathrm{1}}{\sqrt{\mathrm{sin}\:^{\mathrm{3}} {x}\left(\mathrm{sin}\left({a}+{x}\right)\right)\:}} \\ $$

Question Number 76926    Answers: 0   Comments: 1

Question Number 76922    Answers: 0   Comments: 1

Question Number 76920    Answers: 0   Comments: 1

how can i solve ∫ ((sin x dx)/(x^2 e^x )) ? can using elementary calculus?

$${how}\:{can}\:{i}\:{solve}\: \\ $$$$\int\:\frac{\mathrm{sin}\:{x}\:{dx}}{{x}^{\mathrm{2}} \:{e}^{{x}} }\:?\:{can}\:{using}\:{elementary} \\ $$$${calculus}? \\ $$

Question Number 76919    Answers: 1   Comments: 0

what range the function y = ((x−1)/(√(x^2 +x))) ?

$${what}\:{range}\: \\ $$$${the}\:{function}\:{y}\:=\:\frac{{x}−\mathrm{1}}{\sqrt{{x}^{\mathrm{2}} +{x}}}\:? \\ $$

Question Number 76917    Answers: 0   Comments: 2

Question Number 76913    Answers: 1   Comments: 0

Question Number 76910    Answers: 1   Comments: 1

Question Number 76904    Answers: 1   Comments: 2

montrer que: ∀x,y,z>0 x^3 +2y^2 +4z≥6xy^(2/3) z^(1/3)

$$\mathrm{montrer}\:\mathrm{que}: \\ $$$$\forall{x},{y},{z}>\mathrm{0}\:\:{x}^{\mathrm{3}} +\mathrm{2}{y}^{\mathrm{2}} +\mathrm{4}{z}\geqslant\mathrm{6}{xy}^{\mathrm{2}/\mathrm{3}} {z}^{\mathrm{1}/\mathrm{3}} \\ $$

Question Number 76898    Answers: 1   Comments: 0

Question Number 76892    Answers: 3   Comments: 0

Calculate ∫ ((√(9−x^2 ))/x^6 ) dx .

$$\mathcal{C}{alculate}\:\int\:\frac{\sqrt{\mathrm{9}−{x}^{\mathrm{2}} }}{{x}^{\mathrm{6}} }\:{dx}\:. \\ $$

Question Number 76888    Answers: 0   Comments: 3

happy new year sir to all member this forum

$${happy}\:{new}\:{year}\:{sir}\:{to}\:{all}\:{member}\: \\ $$$${this}\:{forum} \\ $$

Question Number 76883    Answers: 0   Comments: 1

what is the perimeter of the loop? 3ay^2 = x(x−3a)^(2 ) ?

$${what}\:{is}\:{the}\:{perimeter}\:{of}\:{the}\:{loop}? \\ $$$$\mathrm{3}{ay}^{\mathrm{2}} \:=\:{x}\left({x}−\mathrm{3}{a}\right)^{\mathrm{2}\:} ? \\ $$

Question Number 76880    Answers: 0   Comments: 2

(((c/5)−7)/5) −2= 5 Intead of 5 what else could be there?

$$\frac{\frac{{c}}{\mathrm{5}}−\mathrm{7}}{\mathrm{5}}\:−\mathrm{2}=\:\mathrm{5} \\ $$$${Intead}\:{of}\:\mathrm{5}\:{what}\:{else}\:{could}\:{be} \\ $$$${there}? \\ $$

Question Number 76872    Answers: 0   Comments: 4

the product of 3 integer x,y,z is 192 . z = 4 and t is equal to average? of x and y . what is the minimum posible value of t?

$${the}\:{product}\:{of}\:\mathrm{3}\:{integer}\:{x},{y},{z}\:{is}\:\mathrm{192} \\ $$$$.\:{z}\:=\:\mathrm{4}\:{and}\:{t}\:{is}\:{equal}\:{to}\:{average}? \\ $$$${of}\:{x}\:{and}\:{y}\:.\:{what}\:{is}\:{the}\:{minimum}\: \\ $$$${posible}\:{value}\:{of}\:{t}? \\ $$

Question Number 76862    Answers: 1   Comments: 0

Find the equation of parabola whose focus (−1,−2) and directrix x−2y+3=0 ??

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{parabola}\: \\ $$$$\mathrm{whose}\:\mathrm{focus}\:\left(−\mathrm{1},−\mathrm{2}\right)\:\mathrm{and}\:\mathrm{directrix} \\ $$$$\mathrm{x}−\mathrm{2y}+\mathrm{3}=\mathrm{0}\:?? \\ $$

Question Number 76858    Answers: 0   Comments: 0

Question Number 76855    Answers: 1   Comments: 2

Question Number 76842    Answers: 2   Comments: 1

what is solution y^(′′ ) + y = 0 .

$$ \\ $$$${what}\:{is}\:{solution}\:{y}^{''\:} +\:\:{y}\:=\:\mathrm{0}\:. \\ $$

Question Number 76860    Answers: 2   Comments: 0

Find the equation of the circle having (2,−2) as its centre and passing through 3x+y=14, 2x+5y=18 ??

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle}\:\mathrm{having} \\ $$$$\left(\mathrm{2},−\mathrm{2}\right)\:\mathrm{as}\:\mathrm{its}\:\mathrm{centre}\:\mathrm{and}\:\mathrm{passing} \\ $$$$\mathrm{through}\:\mathrm{3x}+\mathrm{y}=\mathrm{14},\:\mathrm{2x}+\mathrm{5y}=\mathrm{18}\:?? \\ $$

Question Number 76830    Answers: 1   Comments: 2

  Pg 1349      Pg 1350      Pg 1351      Pg 1352      Pg 1353      Pg 1354      Pg 1355      Pg 1356      Pg 1357      Pg 1358   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com