Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1352

Question Number 78027    Answers: 1   Comments: 1

Question Number 76929    Answers: 2   Comments: 0

∫(1/(√(sin^3 x(sin(a+x)) )))

$$\int\frac{\mathrm{1}}{\sqrt{\mathrm{sin}\:^{\mathrm{3}} {x}\left(\mathrm{sin}\left({a}+{x}\right)\right)\:}} \\ $$

Question Number 76926    Answers: 0   Comments: 1

Question Number 76922    Answers: 0   Comments: 1

Question Number 76920    Answers: 0   Comments: 1

how can i solve ∫ ((sin x dx)/(x^2 e^x )) ? can using elementary calculus?

$${how}\:{can}\:{i}\:{solve}\: \\ $$$$\int\:\frac{\mathrm{sin}\:{x}\:{dx}}{{x}^{\mathrm{2}} \:{e}^{{x}} }\:?\:{can}\:{using}\:{elementary} \\ $$$${calculus}? \\ $$

Question Number 76919    Answers: 1   Comments: 0

what range the function y = ((x−1)/(√(x^2 +x))) ?

$${what}\:{range}\: \\ $$$${the}\:{function}\:{y}\:=\:\frac{{x}−\mathrm{1}}{\sqrt{{x}^{\mathrm{2}} +{x}}}\:? \\ $$

Question Number 76917    Answers: 0   Comments: 2

Question Number 76913    Answers: 1   Comments: 0

Question Number 76910    Answers: 1   Comments: 1

Question Number 76904    Answers: 1   Comments: 2

montrer que: ∀x,y,z>0 x^3 +2y^2 +4z≥6xy^(2/3) z^(1/3)

$$\mathrm{montrer}\:\mathrm{que}: \\ $$$$\forall{x},{y},{z}>\mathrm{0}\:\:{x}^{\mathrm{3}} +\mathrm{2}{y}^{\mathrm{2}} +\mathrm{4}{z}\geqslant\mathrm{6}{xy}^{\mathrm{2}/\mathrm{3}} {z}^{\mathrm{1}/\mathrm{3}} \\ $$

Question Number 76898    Answers: 1   Comments: 0

Question Number 76892    Answers: 3   Comments: 0

Calculate ∫ ((√(9−x^2 ))/x^6 ) dx .

$$\mathcal{C}{alculate}\:\int\:\frac{\sqrt{\mathrm{9}−{x}^{\mathrm{2}} }}{{x}^{\mathrm{6}} }\:{dx}\:. \\ $$

Question Number 76888    Answers: 0   Comments: 3

happy new year sir to all member this forum

$${happy}\:{new}\:{year}\:{sir}\:{to}\:{all}\:{member}\: \\ $$$${this}\:{forum} \\ $$

Question Number 76883    Answers: 0   Comments: 1

what is the perimeter of the loop? 3ay^2 = x(x−3a)^(2 ) ?

$${what}\:{is}\:{the}\:{perimeter}\:{of}\:{the}\:{loop}? \\ $$$$\mathrm{3}{ay}^{\mathrm{2}} \:=\:{x}\left({x}−\mathrm{3}{a}\right)^{\mathrm{2}\:} ? \\ $$

Question Number 76880    Answers: 0   Comments: 2

(((c/5)−7)/5) −2= 5 Intead of 5 what else could be there?

$$\frac{\frac{{c}}{\mathrm{5}}−\mathrm{7}}{\mathrm{5}}\:−\mathrm{2}=\:\mathrm{5} \\ $$$${Intead}\:{of}\:\mathrm{5}\:{what}\:{else}\:{could}\:{be} \\ $$$${there}? \\ $$

Question Number 76872    Answers: 0   Comments: 4

the product of 3 integer x,y,z is 192 . z = 4 and t is equal to average? of x and y . what is the minimum posible value of t?

$${the}\:{product}\:{of}\:\mathrm{3}\:{integer}\:{x},{y},{z}\:{is}\:\mathrm{192} \\ $$$$.\:{z}\:=\:\mathrm{4}\:{and}\:{t}\:{is}\:{equal}\:{to}\:{average}? \\ $$$${of}\:{x}\:{and}\:{y}\:.\:{what}\:{is}\:{the}\:{minimum}\: \\ $$$${posible}\:{value}\:{of}\:{t}? \\ $$

Question Number 76862    Answers: 1   Comments: 0

Find the equation of parabola whose focus (−1,−2) and directrix x−2y+3=0 ??

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{parabola}\: \\ $$$$\mathrm{whose}\:\mathrm{focus}\:\left(−\mathrm{1},−\mathrm{2}\right)\:\mathrm{and}\:\mathrm{directrix} \\ $$$$\mathrm{x}−\mathrm{2y}+\mathrm{3}=\mathrm{0}\:?? \\ $$

Question Number 76858    Answers: 0   Comments: 0

Question Number 76855    Answers: 1   Comments: 2

Question Number 76842    Answers: 2   Comments: 1

what is solution y^(′′ ) + y = 0 .

$$ \\ $$$${what}\:{is}\:{solution}\:{y}^{''\:} +\:\:{y}\:=\:\mathrm{0}\:. \\ $$

Question Number 76860    Answers: 2   Comments: 0

Find the equation of the circle having (2,−2) as its centre and passing through 3x+y=14, 2x+5y=18 ??

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle}\:\mathrm{having} \\ $$$$\left(\mathrm{2},−\mathrm{2}\right)\:\mathrm{as}\:\mathrm{its}\:\mathrm{centre}\:\mathrm{and}\:\mathrm{passing} \\ $$$$\mathrm{through}\:\mathrm{3x}+\mathrm{y}=\mathrm{14},\:\mathrm{2x}+\mathrm{5y}=\mathrm{18}\:?? \\ $$

Question Number 76830    Answers: 1   Comments: 2

Question Number 76826    Answers: 1   Comments: 0

Question Number 76819    Answers: 0   Comments: 4

one of the foci of the ellipse (x^2 /9) + (y^2 /4) = 1 is A. (4,0) B. (9,0) C. (5,0) D. ((√5) , 0)

$$\mathrm{one}\:\mathrm{of}\:\mathrm{the}\:\mathrm{foci}\:\mathrm{of}\:\mathrm{the}\:\mathrm{ellipse} \\ $$$$\:\:\:\:\:\frac{{x}^{\mathrm{2}} }{\mathrm{9}}\:+\:\frac{{y}^{\mathrm{2}} }{\mathrm{4}}\:=\:\mathrm{1}\:\mathrm{is} \\ $$$$\mathrm{A}.\:\left(\mathrm{4},\mathrm{0}\right) \\ $$$$\mathrm{B}.\:\left(\mathrm{9},\mathrm{0}\right) \\ $$$$\mathrm{C}.\:\left(\mathrm{5},\mathrm{0}\right) \\ $$$$\mathrm{D}.\:\left(\sqrt{\mathrm{5}}\:,\:\mathrm{0}\right) \\ $$

Question Number 76817    Answers: 0   Comments: 2

A compound pendulum ocsillates through angles θ about its equilibrium position such that 8aθ^2 = 9g cosθ, a>0. its period is A. 2π(√((8a)/(9g))) B. ((3π)/8)(√(a/g)) C. 2π(√((9g)/(8a))) D. ((8π)/3)(√(a/g))

$$\mathrm{A}\:\mathrm{compound}\:\mathrm{pendulum}\:\mathrm{ocsillates} \\ $$$$\mathrm{through}\:\mathrm{angles}\:\theta\:\mathrm{about}\:\mathrm{its}\:\mathrm{equilibrium} \\ $$$$\mathrm{position}\:\mathrm{such}\:\mathrm{that}\: \\ $$$$\mathrm{8}{a}\theta^{\mathrm{2}} \:=\:\mathrm{9}{g}\:{cos}\theta,\:{a}>\mathrm{0}.\:\mathrm{its}\:\mathrm{period}\:\mathrm{is}\: \\ $$$$\mathrm{A}.\:\mathrm{2}\pi\sqrt{\frac{\mathrm{8}{a}}{\mathrm{9}{g}}} \\ $$$$\mathrm{B}.\:\frac{\mathrm{3}\pi}{\mathrm{8}}\sqrt{\frac{{a}}{{g}}} \\ $$$$\mathrm{C}.\:\mathrm{2}\pi\sqrt{\frac{\mathrm{9}{g}}{\mathrm{8}{a}}} \\ $$$$\mathrm{D}.\:\frac{\mathrm{8}\pi}{\mathrm{3}}\sqrt{\frac{{a}}{{g}}} \\ $$

Question Number 76815    Answers: 1   Comments: 2

Which one of the following series is Not convergent? A. Σ_(r=1) ^∞ (1/r^3 ) B. Σ_(r=1) ^∞ (1/r^2 ) C. Σ_(r=1) ^∞ (1/(r^2 −4)) D. Σ_(r=1) ^∞ (1/(5r))

$$\mathrm{Which}\:\mathrm{one}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{series}\:\mathrm{is}\:\boldsymbol{\mathrm{N}}\mathrm{o}\boldsymbol{\mathrm{t}}\:\mathrm{convergent}? \\ $$$$\mathrm{A}.\:\underset{\mathrm{r}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{r}^{\mathrm{3}} } \\ $$$$\mathrm{B}.\:\underset{\mathrm{r}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{r}^{\mathrm{2}} } \\ $$$$\mathrm{C}.\:\underset{\mathrm{r}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{r}^{\mathrm{2}} −\mathrm{4}} \\ $$$$\mathrm{D}.\:\underset{\mathrm{r}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{5r}} \\ $$

  Pg 1347      Pg 1348      Pg 1349      Pg 1350      Pg 1351      Pg 1352      Pg 1353      Pg 1354      Pg 1355      Pg 1356   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com