Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1352

Question Number 69894    Answers: 0   Comments: 3

∫ ((2x^5 −x)/(x^3 −2))dx

$$\int\:\frac{\mathrm{2}{x}^{\mathrm{5}} −{x}}{{x}^{\mathrm{3}} −\mathrm{2}}{dx} \\ $$

Question Number 69966    Answers: 0   Comments: 1

Question Number 69878    Answers: 0   Comments: 3

Question Number 69874    Answers: 0   Comments: 3

Hi We are still working on solving android api update and notification related issues. The solution of these problem will take a few more weeks. Sorry about the inconvenience caused and we thank you for your patience.

$$\mathrm{Hi} \\ $$$$ \\ $$$$\mathrm{We}\:\mathrm{are}\:\mathrm{still}\:\mathrm{working}\:\mathrm{on}\:\mathrm{solving} \\ $$$$\mathrm{android}\:\mathrm{api}\:\mathrm{update}\:\mathrm{and}\:\mathrm{notification} \\ $$$$\mathrm{related}\:\mathrm{issues}.\:\mathrm{The}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{these} \\ $$$$\mathrm{problem}\:\mathrm{will}\:\mathrm{take}\:\mathrm{a}\:\mathrm{few}\:\mathrm{more}\:\mathrm{weeks}. \\ $$$$ \\ $$$$\mathrm{Sorry}\:\mathrm{about}\:\mathrm{the}\:\mathrm{inconvenience} \\ $$$$\mathrm{caused}\:\mathrm{and}\:\mathrm{we}\:\mathrm{thank}\:\mathrm{you}\:\mathrm{for}\:\mathrm{your} \\ $$$$\mathrm{patience}. \\ $$$$ \\ $$$$ \\ $$

Question Number 69871    Answers: 1   Comments: 0

Here, m^2 −n^(2 ) = 4(√(mn ))and tanθ+sinθ= m then prove that, tanθ−sinθ= n.

$$\mathrm{Here},\:\mathrm{m}^{\mathrm{2}} −\mathrm{n}^{\mathrm{2}\:\:} =\:\mathrm{4}\sqrt{\mathrm{mn}\:}\mathrm{and}\:\mathrm{tan}\theta+\mathrm{sin}\theta=\:\mathrm{m} \\ $$$$\mathrm{then}\:\mathrm{prove}\:\mathrm{that},\:\mathrm{tan}\theta−\mathrm{sin}\theta=\:\mathrm{n}. \\ $$

Question Number 69873    Answers: 0   Comments: 1

Question Number 69866    Answers: 1   Comments: 0

Question Number 69851    Answers: 0   Comments: 0

A convex mirror of radius of curvature 30cm forms a real image 20cm from its surface.Find whether the imavect is erect or inverted.Please explain how possible this is. Thanks in advance.

$${A}\:{convex}\:{mirror}\:{of}\:{radius}\:{of}\:{curvature} \\ $$$$\mathrm{30}{cm}\:{forms}\:{a}\:{real}\:{image}\:\mathrm{20}{cm}\:{from}\:{its} \\ $$$${surface}.{Find}\:{whether}\:{the}\:{imavect}\:{is} \\ $$$${erect}\:{or}\:{inverted}.{Please}\:{explain}\:{how}\: \\ $$$${possible}\:{this}\:{is}. \\ $$$$ \\ $$$${Thanks}\:{in}\:{advance}. \\ $$

Question Number 69847    Answers: 1   Comments: 0

A plane is travelling at 500km/hr eastward. wind blows at 90km/hr southward. find the velocity and direction if the plane rlative to the ground.

$${A}\:{plane}\:{is}\:{travelling}\:{at}\:\mathrm{500}{km}/{hr}\:{eastward}. \\ $$$${wind}\:{blows}\:{at}\:\mathrm{90}{km}/{hr}\:{southward}. \\ $$$${find}\:{the}\:{velocity}\:{and}\:{direction}\:{if}\:{the}\:{plane}\:{rlative}\:{to}\:{the}\:{ground}. \\ $$

Question Number 69846    Answers: 1   Comments: 0

Find the x−component and y−component of a 25N force acting at 210° angle

$${Find}\:{the}\:{x}−{component}\:{and}\:{y}−{component}\:{of}\:{a}\:\mathrm{25}{N}\:{force}\:{acting}\:{at}\:\mathrm{210}°\:{angle} \\ $$

Question Number 69836    Answers: 1   Comments: 2

Question Number 69829    Answers: 2   Comments: 2

Question Number 69827    Answers: 2   Comments: 0

The acceleration of a particle moving in a straight line is defined as a=6t−20 m/s^2 , where t is in seconds. Knowing that s=0m when t=3s and that t=5sec when v=2m/s. Determine the total distance travelled when t=11s.

$${The}\:{acceleration}\:{of}\:{a}\:{particle}\:{moving} \\ $$$${in}\:{a}\:{straight}\:{line}\:{is}\:{defined}\:{as}\:{a}=\mathrm{6}{t}−\mathrm{20} \\ $$$${m}/{s}^{\mathrm{2}} ,\:{where}\:{t}\:{is}\:{in}\:{seconds}.\:{Knowing} \\ $$$${that}\:{s}=\mathrm{0}{m}\:{when}\:{t}=\mathrm{3}{s}\:{and}\:{that}\:{t}=\mathrm{5}{sec} \\ $$$${when}\:{v}=\mathrm{2}{m}/{s}.\:{Determine}\:{the}\:{total} \\ $$$${distance}\:{travelled}\:{when}\:{t}=\mathrm{11}{s}. \\ $$

Question Number 69809    Answers: 2   Comments: 2

lim_(x→∞) xsin (π/x)

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{x}\mathrm{sin}\:\frac{\pi}{{x}} \\ $$

Question Number 69803    Answers: 0   Comments: 2

1)find f(α) =∫_0 ^∞ ((cos(αx))/((x^4 +1)^2 ))dx with α real 2) find the value of ∫_0 ^∞ ((cos(2x))/((x^4 +1)^2 ))dx 3) find nature of the serie Σf(n)

$$\left.\mathrm{1}\right){find}\:\:\:{f}\left(\alpha\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{cos}\left(\alpha{x}\right)}{\left({x}^{\mathrm{4}} +\mathrm{1}\right)^{\mathrm{2}} }{dx}\:\:{with}\:\alpha\:{real} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left(\mathrm{2}{x}\right)}{\left({x}^{\mathrm{4}} +\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{nature}\:{of}\:{the}\:{serie}\:\Sigma{f}\left({n}\right) \\ $$

Question Number 69795    Answers: 0   Comments: 1

let p(x)=(x+in)^n −n^n with n integr natural 1) find the roots of p(x) 2)factorize p(x) inside C[x] 3) decompose the fraction F(x)=(1/(p(x)))

$${let}\:{p}\left({x}\right)=\left({x}+{in}\right)^{{n}} −{n}^{{n}} \:{with}\:{n}\:{integr}\:{natural} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{the}\:{roots}\:{of}\:{p}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){factorize}\:{p}\left({x}\right)\:{inside}\:{C}\left[{x}\right] \\ $$$$\left.\mathrm{3}\right)\:{decompose}\:{the}\:{fraction}\:{F}\left({x}\right)=\frac{\mathrm{1}}{{p}\left({x}\right)} \\ $$

Question Number 69794    Answers: 1   Comments: 2

let p(x)=(x+1)^6 −e^(iα) with α real 1) find the roots of p(x) 2) factorize p(x)inside C[x] 3)factorize p(x)inside R[x]

$${let}\:{p}\left({x}\right)=\left({x}+\mathrm{1}\right)^{\mathrm{6}} \:−{e}^{{i}\alpha} \:\:\:\:{with}\:\alpha\:{real} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{the}\:{roots}\:{of}\:{p}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{factorize}\:{p}\left({x}\right){inside}\:{C}\left[{x}\right] \\ $$$$\left.\mathrm{3}\right){factorize}\:{p}\left({x}\right){inside}\:{R}\left[{x}\right] \\ $$

Question Number 69792    Answers: 1   Comments: 1

find f(α) =∫ (dx/(x+α+(√(x^2 +3)))) and g(α)=∫ (dx/((x+α+(√(x^2 +3)))^2 )) with α real

$${find}\:{f}\left(\alpha\right)\:=\int\:\:\:\frac{{dx}}{{x}+\alpha+\sqrt{{x}^{\mathrm{2}} \:+\mathrm{3}}} \\ $$$${and}\:{g}\left(\alpha\right)=\int\:\:\:\frac{{dx}}{\left({x}+\alpha+\sqrt{{x}^{\mathrm{2}} +\mathrm{3}}\right)^{\mathrm{2}} }\:\:\:\:{with}\:\alpha\:{real} \\ $$

Question Number 69790    Answers: 0   Comments: 1

sove (x^2 −3x)y^(′′) +2x y^′ =(2x+1)e^(−x^2 )

$${sove}\:\left({x}^{\mathrm{2}} −\mathrm{3}{x}\right){y}^{''} \:\:+\mathrm{2}{x}\:{y}^{'} \:=\left(\mathrm{2}{x}+\mathrm{1}\right){e}^{−{x}^{\mathrm{2}} } \\ $$

Question Number 69789    Answers: 0   Comments: 0

solve sin(2x)y^′ −3(cosx)y =xe^(−x)

$${solve}\:{sin}\left(\mathrm{2}{x}\right){y}^{'} \:−\mathrm{3}\left({cosx}\right){y}\:={xe}^{−{x}} \\ $$

Question Number 69786    Answers: 0   Comments: 1

calculate Σ_(n=1) ^∞ (((2n+1)(−1)^n )/(n^2 (n+1)(n+2)^2 ))

$${calculate}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{\left(\mathrm{2}{n}+\mathrm{1}\right)\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)^{\mathrm{2}} } \\ $$

Question Number 69784    Answers: 0   Comments: 0

calculate f(a) =∫_0 ^∞ e^(−(x^2 +(a/x^2 ))) dx with a>0

$${calculate}\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\left({x}^{\mathrm{2}} \:+\frac{{a}}{{x}^{\mathrm{2}} }\right)} {dx}\:\:{with}\:{a}>\mathrm{0} \\ $$

Question Number 69778    Answers: 2   Comments: 5

prove that the equation (b^2 −4ac)x^2 + 4(a + c)x −4 = 0 is always real.

$${prove}\:{that}\:{the}\:{equation}\: \\ $$$$\:\:\left({b}^{\mathrm{2}} −\mathrm{4}{ac}\right){x}^{\mathrm{2}} \:+\:\mathrm{4}\left({a}\:+\:{c}\right){x}\:−\mathrm{4}\:=\:\mathrm{0}\:{is}\:{always}\:{real}. \\ $$

Question Number 69766    Answers: 0   Comments: 4

find (dy/dx) at the point (0,3) when 2x^2 y + y + 4xy^2 = 2x + 3

$${find}\:\:\frac{{dy}}{{dx}}\:\:{at}\:{the}\:{point}\:\:\left(\mathrm{0},\mathrm{3}\right)\:\:{when}\:\:\mathrm{2}{x}^{\mathrm{2}} {y}\:+\:{y}\:+\:\mathrm{4}{xy}^{\mathrm{2}} \:=\:\mathrm{2}{x}\:+\:\mathrm{3}\: \\ $$

Question Number 69765    Answers: 1   Comments: 0

Given that y = (√(5x^2 + 3)) , show that when x^2 = (6/5) , (d^2 y/dx^(2 ) ) = ((125)/8)

$${Given}\:{that}\:\:{y}\:=\:\sqrt{\mathrm{5}{x}^{\mathrm{2}} \:+\:\mathrm{3}}\:,\:{show}\:{that}\:\:{when}\:{x}^{\mathrm{2}} \:=\:\frac{\mathrm{6}}{\mathrm{5}}\:,\:\:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}\:} }\:=\:\frac{\mathrm{125}}{\mathrm{8}} \\ $$

Question Number 69764    Answers: 1   Comments: 1

find (dy/dx) if x = sin^2 t and y= tan t at t = (π/4)

$${find}\:\:\:\frac{{dy}}{{dx}}\:\:{if}\:\:{x}\:=\:{sin}^{\mathrm{2}} {t}\:\:{and}\:\:{y}=\:{tan}\:{t}\:{at}\:\:{t}\:=\:\frac{\pi}{\mathrm{4}} \\ $$

  Pg 1347      Pg 1348      Pg 1349      Pg 1350      Pg 1351      Pg 1352      Pg 1353      Pg 1354      Pg 1355      Pg 1356   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com