Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1350
Question Number 70296 Answers: 1 Comments: 1
Question Number 70225 Answers: 1 Comments: 3
Question Number 70198 Answers: 1 Comments: 0
Question Number 70197 Answers: 0 Comments: 1
Question Number 70196 Answers: 1 Comments: 0
Question Number 70216 Answers: 0 Comments: 0
$${let}\:{A}\:=\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\:\:\:−\mathrm{1}}\\{\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}}\end{pmatrix} \\ $$$$\left.\mathrm{1}\right){calculate}\:{A}^{{n}} \:\:\:\:\: \\ $$$$\left.\mathrm{2}\right)\:{find}\:{e}^{{A}} \:{and}\:{e}^{−{A}} \\ $$
Question Number 70237 Answers: 0 Comments: 3
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{xsin}\left(\alpha{x}\right)}{\mathrm{1}+{x}^{\mathrm{4}} }{dx}\:{with}\:\alpha\:{real} \\ $$
Question Number 70298 Answers: 1 Comments: 0
Question Number 70168 Answers: 1 Comments: 3
Question Number 70167 Answers: 0 Comments: 1
$${find}\:{minima}\:{of} \\ $$$$\left({x}_{\mathrm{1}} −{x}_{\mathrm{2}} \right)^{\mathrm{2}} +\mathrm{5}+\sqrt{\mathrm{1}−\left({x}_{\mathrm{1}} \right)^{\mathrm{2}} }+\sqrt{\mathrm{4}{x}_{\mathrm{2}} }\:\:\forall\:{x}_{\mathrm{1}} ,{x}_{\mathrm{2}} \in{R} \\ $$
Question Number 70163 Answers: 1 Comments: 0
Question Number 70162 Answers: 1 Comments: 0
Question Number 70161 Answers: 1 Comments: 0
Question Number 70159 Answers: 1 Comments: 1
Question Number 70150 Answers: 0 Comments: 1
$${prove}\:{that}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \sqrt{\left(\mathrm{4}−{sin}^{\mathrm{2}} {x}\right)}{dx}\:<\:\frac{\pi\sqrt{\mathrm{14}}}{\mathrm{4}} \\ $$
Question Number 70147 Answers: 1 Comments: 4
$${Consider}\:{the}\:{functions}\: \\ $$$${f}\left({x}\right)=\mathrm{5}×\mathrm{4}^{−{x}} \:{and}\:{g}\left({x}\right)=\left(\mathrm{0}.\mathrm{25}\right)^{\mathrm{2}{x}} +\mathrm{4} \\ $$$${For}\:{what}\:{values}\:{of}\:{x}\:{do}\:{these}\: \\ $$$${functions}\:{assume}\:{equal}\:{values}? \\ $$
Question Number 70145 Answers: 1 Comments: 0
$${prove}\:{that}\:;\:{arg}\left(\boldsymbol{{z}}\mathrm{1}\boldsymbol{{z}}\mathrm{2}\right)={arg}\left({z}\mathrm{1}\right)+{arg}\left({z}\mathrm{2}\right). \\ $$$${arg}\left({z}\mathrm{1}/{z}\mathrm{2}\right)={arg}\left({z}\mathrm{1}\right)−{arg}\left({z}\mathrm{2}\right). \\ $$
Question Number 70138 Answers: 1 Comments: 0
$${prove}\:{that}\:\:\:{e}^{{i}\theta} ={e}^{{i}\left(\theta+\mathrm{2}{k}\Pi\right)} \:\:{given}\:{that}\:{k}=\mathrm{0},\pm\mathrm{1},\pm\mathrm{2}... \\ $$
Question Number 70135 Answers: 0 Comments: 1
$${sophie}−{Germain}\:{identity} \\ $$$${a}^{\mathrm{4}} +\mathrm{4}{b}^{\mathrm{4}} =\left(\left({a}+{b}\right)^{\mathrm{2}} +{b}^{\mathrm{2}} \right)\left(\left({a}−{b}\right)^{\mathrm{2}} +{b}^{\mathrm{2}} \right) \\ $$
Question Number 70132 Answers: 1 Comments: 1
$$\underset{{n}=\mathrm{1}} {\overset{\mathrm{3050}} {\sum}}\:{i}^{{n}} \\ $$
Question Number 70121 Answers: 1 Comments: 0
Question Number 70108 Answers: 1 Comments: 0
Question Number 70103 Answers: 2 Comments: 0
$$\mathrm{if}\:\mathrm{m}^{\mathrm{3}} +\mathrm{2p}^{\mathrm{3}} =\mathrm{3mn},\:\mathrm{a}^{\mathrm{3}} +\mathrm{b}^{\mathrm{3}} =\mathrm{p}^{\mathrm{3}} \:\mathrm{and} \\ $$$$\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} =\mathrm{n}\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that}\:\mathrm{a}+\mathrm{b}=\mathrm{m}. \\ $$
Question Number 70075 Answers: 0 Comments: 3
Question Number 70074 Answers: 1 Comments: 1
$$\int_{\mathrm{1}} ^{\mathrm{2}} \left[\mathrm{3}+\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\right]{dt}= \\ $$
Question Number 70069 Answers: 1 Comments: 2
$$\underset{{n}=\mathrm{1}} {\overset{\mathrm{5}} {\prod}}\frac{\left(\mathrm{12}{n}−\mathrm{2}\right)^{\mathrm{4}} +\mathrm{18}^{\mathrm{2}} }{\left(\mathrm{12}{n}−\mathrm{8}\right)^{\mathrm{4}} +\mathrm{18}^{\mathrm{2}} } \\ $$$$=\frac{\left(\mathrm{10}^{\mathrm{4}} +\mathrm{324}\right)\left(\mathrm{22}^{\mathrm{4}} +\mathrm{324}\right)\left(\mathrm{34}^{\mathrm{4}} +\mathrm{324}\right)\left(\mathrm{46}^{\mathrm{4}} +\mathrm{324}\right)\left(\mathrm{58}^{\mathrm{4}} +\mathrm{324}\right)}{\left(\mathrm{4}^{\mathrm{4}} +\mathrm{324}\right)\left(\mathrm{16}^{\mathrm{4}} +\mathrm{324}\right)\left(\mathrm{28}^{\mathrm{4}} +\mathrm{324}\right)\left(\mathrm{40}^{\mathrm{4}} +\mathrm{324}\right)\left(\mathrm{52}^{\mathrm{4}} +\mathrm{324}\right)} \\ $$
Pg 1345 Pg 1346 Pg 1347 Pg 1348 Pg 1349 Pg 1350 Pg 1351 Pg 1352 Pg 1353 Pg 1354
Terms of Service
Privacy Policy
Contact: info@tinkutara.com