Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1350

Question Number 70252    Answers: 1   Comments: 0

If, log x^y = 6 and log 14x^(8y) = 3 then find the value of x, y.

$$\mathrm{If},\:\mathrm{log}\:\mathrm{x}^{\mathrm{y}} \:=\:\mathrm{6}\:\mathrm{and}\:\mathrm{log}\:\mathrm{14x}^{\mathrm{8y}} \:=\:\mathrm{3}\:\mathrm{then}\:\mathrm{find} \\ $$$$\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x},\:\mathrm{y}. \\ $$

Question Number 70287    Answers: 0   Comments: 2

I wanted to say this earlier... I love mathematics and I also love people. But I′m not here to solve the same old boring problems copied from facebook or whatsapp or other platforms. They are not interesting at all. They have been coming in as a kind of competition, or simply to brag, they′ve been traded from one non−mathematician to the other. No use to copy−paste problems that you found somewhere on the web and that you might not even be able to fully understand. If you need an explanation, you′re welcome, but I won′t do your homework and I won′t answer impolite posts. Last but not least: I won′t try to solve the famous unsolved problems much better people were not able to cope with.

$$\mathrm{I}\:\mathrm{wanted}\:\mathrm{to}\:\mathrm{say}\:\mathrm{this}\:\mathrm{earlier}... \\ $$$$\mathrm{I}\:\mathrm{love}\:\mathrm{mathematics}\:\mathrm{and}\:\mathrm{I}\:\mathrm{also}\:\mathrm{love}\:\mathrm{people}. \\ $$$$\mathrm{But}\:\mathrm{I}'\mathrm{m}\:\mathrm{not}\:\mathrm{here}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{the}\:\mathrm{same}\:\mathrm{old}\:\mathrm{boring} \\ $$$$\mathrm{problems}\:\mathrm{copied}\:\mathrm{from}\:\mathrm{facebook}\:\mathrm{or}\:\mathrm{whatsapp} \\ $$$$\mathrm{or}\:\mathrm{other}\:\mathrm{platforms}.\:\mathrm{They}\:\mathrm{are}\:\mathrm{not}\:\mathrm{interesting} \\ $$$$\mathrm{at}\:\mathrm{all}.\:\mathrm{They}\:\mathrm{have}\:\mathrm{been}\:\mathrm{coming}\:\mathrm{in}\:\mathrm{as}\:\mathrm{a}\:\mathrm{kind} \\ $$$$\mathrm{of}\:\mathrm{competition},\:\mathrm{or}\:\mathrm{simply}\:\mathrm{to}\:\mathrm{brag},\:\mathrm{they}'\mathrm{ve} \\ $$$$\mathrm{been}\:\mathrm{traded}\:\mathrm{from}\:\mathrm{one}\:\mathrm{non}−\mathrm{mathematician} \\ $$$$\mathrm{to}\:\mathrm{the}\:\mathrm{other}. \\ $$$$ \\ $$$$\mathrm{No}\:\mathrm{use}\:\mathrm{to}\:\mathrm{copy}−\mathrm{paste}\:\mathrm{problems}\:\mathrm{that}\:\mathrm{you} \\ $$$$\mathrm{found}\:\mathrm{somewhere}\:\mathrm{on}\:\mathrm{the}\:\mathrm{web}\:\mathrm{and}\:\mathrm{that}\:\mathrm{you} \\ $$$$\mathrm{might}\:\mathrm{not}\:\mathrm{even}\:\mathrm{be}\:\mathrm{able}\:\mathrm{to}\:\mathrm{fully}\:\mathrm{understand}. \\ $$$$ \\ $$$$\mathrm{If}\:\mathrm{you}\:\mathrm{need}\:\mathrm{an}\:\mathrm{explanation},\:\mathrm{you}'\mathrm{re}\:\mathrm{welcome}, \\ $$$$\mathrm{but}\:\mathrm{I}\:\mathrm{won}'\mathrm{t}\:\mathrm{do}\:\mathrm{your}\:\mathrm{homework}\:\mathrm{and}\:\mathrm{I}\:\mathrm{won}'\mathrm{t} \\ $$$$\mathrm{answer}\:\mathrm{impolite}\:\mathrm{posts}. \\ $$$$ \\ $$$$\mathrm{Last}\:\mathrm{but}\:\mathrm{not}\:\mathrm{least}:\:\mathrm{I}\:\mathrm{won}'\mathrm{t}\:\mathrm{try}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{the} \\ $$$$\mathrm{famous}\:\mathrm{unsolved}\:\mathrm{problems}\:\mathrm{much}\:\mathrm{better} \\ $$$$\mathrm{people}\:\mathrm{were}\:\mathrm{not}\:\mathrm{able}\:\mathrm{to}\:\mathrm{cope}\:\mathrm{with}. \\ $$

Question Number 70232    Answers: 0   Comments: 3

Solve xy′ − y sin x + y^5 = 0

$$\mathrm{Solve} \\ $$$${xy}'\:−\:{y}\:\mathrm{sin}\:{x}\:+\:{y}^{\mathrm{5}} \:=\:\mathrm{0} \\ $$

Question Number 70230    Answers: 0   Comments: 2

Question Number 70219    Answers: 0   Comments: 1

Question Number 70296    Answers: 1   Comments: 1

Question Number 70225    Answers: 1   Comments: 3

Question Number 70198    Answers: 1   Comments: 0

Question Number 70197    Answers: 0   Comments: 1

Question Number 70196    Answers: 1   Comments: 0

Question Number 70216    Answers: 0   Comments: 0

let A = (((1 −1)),((1 2)) ) 1)calculate A^n 2) find e^A and e^(−A)

$${let}\:{A}\:=\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\:\:\:−\mathrm{1}}\\{\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}}\end{pmatrix} \\ $$$$\left.\mathrm{1}\right){calculate}\:{A}^{{n}} \:\:\:\:\: \\ $$$$\left.\mathrm{2}\right)\:{find}\:{e}^{{A}} \:{and}\:{e}^{−{A}} \\ $$

Question Number 70237    Answers: 0   Comments: 3

calculate ∫_0 ^∞ ((xsin(αx))/(1+x^4 ))dx with α real

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{xsin}\left(\alpha{x}\right)}{\mathrm{1}+{x}^{\mathrm{4}} }{dx}\:{with}\:\alpha\:{real} \\ $$

Question Number 70298    Answers: 1   Comments: 0

Question Number 70168    Answers: 1   Comments: 3

Question Number 70167    Answers: 0   Comments: 1

find minima of (x_1 −x_2 )^2 +5+(√(1−(x_1 )^2 ))+(√(4x_2 )) ∀ x_1 ,x_2 ∈R

$${find}\:{minima}\:{of} \\ $$$$\left({x}_{\mathrm{1}} −{x}_{\mathrm{2}} \right)^{\mathrm{2}} +\mathrm{5}+\sqrt{\mathrm{1}−\left({x}_{\mathrm{1}} \right)^{\mathrm{2}} }+\sqrt{\mathrm{4}{x}_{\mathrm{2}} }\:\:\forall\:{x}_{\mathrm{1}} ,{x}_{\mathrm{2}} \in{R} \\ $$

Question Number 70163    Answers: 1   Comments: 0

Question Number 70162    Answers: 1   Comments: 0

Question Number 70161    Answers: 1   Comments: 0

Question Number 70159    Answers: 1   Comments: 1

Question Number 70150    Answers: 0   Comments: 1

prove that ∫_0 ^(π/2) (√((4−sin^2 x)))dx < ((π(√(14)))/4)

$${prove}\:{that}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \sqrt{\left(\mathrm{4}−{sin}^{\mathrm{2}} {x}\right)}{dx}\:<\:\frac{\pi\sqrt{\mathrm{14}}}{\mathrm{4}} \\ $$

Question Number 70147    Answers: 1   Comments: 4

Consider the functions f(x)=5×4^(−x) and g(x)=(0.25)^(2x) +4 For what values of x do these functions assume equal values?

$${Consider}\:{the}\:{functions}\: \\ $$$${f}\left({x}\right)=\mathrm{5}×\mathrm{4}^{−{x}} \:{and}\:{g}\left({x}\right)=\left(\mathrm{0}.\mathrm{25}\right)^{\mathrm{2}{x}} +\mathrm{4} \\ $$$${For}\:{what}\:{values}\:{of}\:{x}\:{do}\:{these}\: \\ $$$${functions}\:{assume}\:{equal}\:{values}? \\ $$

Question Number 70145    Answers: 1   Comments: 0

prove that ; arg(z1z2)=arg(z1)+arg(z2). arg(z1/z2)=arg(z1)−arg(z2).

$${prove}\:{that}\:;\:{arg}\left(\boldsymbol{{z}}\mathrm{1}\boldsymbol{{z}}\mathrm{2}\right)={arg}\left({z}\mathrm{1}\right)+{arg}\left({z}\mathrm{2}\right). \\ $$$${arg}\left({z}\mathrm{1}/{z}\mathrm{2}\right)={arg}\left({z}\mathrm{1}\right)−{arg}\left({z}\mathrm{2}\right). \\ $$

Question Number 70138    Answers: 1   Comments: 0

prove that e^(iθ) =e^(i(θ+2kΠ)) given that k=0,±1,±2...

$${prove}\:{that}\:\:\:{e}^{{i}\theta} ={e}^{{i}\left(\theta+\mathrm{2}{k}\Pi\right)} \:\:{given}\:{that}\:{k}=\mathrm{0},\pm\mathrm{1},\pm\mathrm{2}... \\ $$

Question Number 70135    Answers: 0   Comments: 1

sophie−Germain identity a^4 +4b^4 =((a+b)^2 +b^2 )((a−b)^2 +b^2 )

$${sophie}−{Germain}\:{identity} \\ $$$${a}^{\mathrm{4}} +\mathrm{4}{b}^{\mathrm{4}} =\left(\left({a}+{b}\right)^{\mathrm{2}} +{b}^{\mathrm{2}} \right)\left(\left({a}−{b}\right)^{\mathrm{2}} +{b}^{\mathrm{2}} \right) \\ $$

Question Number 70132    Answers: 1   Comments: 1

Σ_(n=1) ^(3050) i^n

$$\underset{{n}=\mathrm{1}} {\overset{\mathrm{3050}} {\sum}}\:{i}^{{n}} \\ $$

Question Number 70121    Answers: 1   Comments: 0

  Pg 1345      Pg 1346      Pg 1347      Pg 1348      Pg 1349      Pg 1350      Pg 1351      Pg 1352      Pg 1353      Pg 1354   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com