Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1349

Question Number 74580    Answers: 1   Comments: 0

Question Number 74579    Answers: 0   Comments: 0

find the gradient of scalar point function being expressed in term of scalar triple product as u=(a^ ,b^ ,c^ )=a^ .b^ ×c^

$${find}\:{the}\:{gradient}\:{of}\:{scalar}\:{point}\:{function}\:{being}\:{expressed}\:{in}\:{term}\:{of}\:{scalar}\:{triple}\:{product}\:{as}\:{u}=\left(\bar {{a}},\bar {{b}},\bar {{c}}\right)=\bar {{a}}.\bar {{b}}×\bar {{c}} \\ $$

Question Number 74573    Answers: 1   Comments: 1

Find (turn it into non-segma expression) 1+Σ_(k=1) ^(n−1) (((−1)^k +3)/2)

$$\mathrm{Find}\:\left(\mathrm{turn}\:\mathrm{it}\:\mathrm{into}\:\mathrm{non}-\mathrm{segma}\:\mathrm{expression}\right) \\ $$$$\mathrm{1}+\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\sum}}\frac{\left(−\mathrm{1}\right)^{{k}} +\mathrm{3}}{\mathrm{2}} \\ $$

Question Number 74604    Answers: 0   Comments: 3

.

$$. \\ $$

Question Number 74601    Answers: 0   Comments: 0

solve y′′+ a(x)y=b(x) the general form of the solution if possible or juzt a solving metbod

$${solve}\:\:\:{y}''+\:{a}\left({x}\right){y}={b}\left({x}\right)\: \\ $$$${the}\:\:{general}\:\:{form}\:{of}\:\:{the}\:{solution}\:{if}\:\:{possible} \\ $$$${or}\:\:{juzt}\:{a}\:{solving}\:{metbod} \\ $$

Question Number 74600    Answers: 1   Comments: 0

Question Number 74599    Answers: 0   Comments: 0

Hello,verry Nice day let U_n =E((((3+(√(17)))/2))^n ),n∈N^∗ show that U_n ≡n(2)

$$\mathrm{Hello},\mathrm{verry}\:\mathrm{Nice}\:\mathrm{day}\: \\ $$$$\mathrm{let}\:\mathrm{U}_{\mathrm{n}} =\mathrm{E}\left(\left(\frac{\mathrm{3}+\sqrt{\mathrm{17}}}{\mathrm{2}}\right)^{\mathrm{n}} \right),\mathrm{n}\in\mathbb{N}^{\ast} \\ $$$$\mathrm{show}\:\mathrm{that}\:\mathrm{U}_{\mathrm{n}} \equiv\mathrm{n}\left(\mathrm{2}\right) \\ $$

Question Number 74570    Answers: 1   Comments: 0

lim_(n→∞) (1/((n)^(1/n) )) = ?

$${lim}_{{n}\rightarrow\infty} \frac{\mathrm{1}}{\left({n}\right)^{\frac{\mathrm{1}}{{n}}} }\:=\:? \\ $$

Question Number 74617    Answers: 0   Comments: 0

Expand 1+Σ_(k=1) ^(n−1) [∣((2(√3))/3)sin(120x)∣+2]

$$\mathrm{Expand} \\ $$$$\mathrm{1}+\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\sum}}\left[\mid\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{3}}{sin}\left(\mathrm{120}{x}\right)\mid+\mathrm{2}\right] \\ $$

Question Number 74615    Answers: 2   Comments: 0

Question Number 74614    Answers: 1   Comments: 0

Question Number 74611    Answers: 1   Comments: 0

Question Number 74609    Answers: 0   Comments: 1

.

$$. \\ $$

Question Number 74559    Answers: 0   Comments: 0

The sum of N Arithmetic means between two numbers is 20. If last mean is double of 1st mean and one is three times the another number. Find the numbers

$$\mathrm{The}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{N}\:\mathrm{Arithmetic}\:\mathrm{means}\:\mathrm{between}\:\mathrm{two}\:\mathrm{numbers} \\ $$$$\mathrm{is}\:\mathrm{20}.\:\mathrm{If}\:\mathrm{last}\:\mathrm{mean}\:\mathrm{is}\:\mathrm{double}\:\mathrm{of}\:\mathrm{1st}\:\mathrm{mean} \\ $$$$\mathrm{and}\:\mathrm{one}\:\mathrm{is}\:\mathrm{three}\:\mathrm{times}\:\mathrm{the}\:\mathrm{another}\:\mathrm{number}.\: \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{numbers} \\ $$

Question Number 74557    Answers: 1   Comments: 2

Question Number 74555    Answers: 0   Comments: 1

Good day friends.I saw a post on a group chat where someone said he needs help on functional iteration. He said he needs some solvings with overleaf and also to play the report on latex.He is highly willing to pay so I thought to myself to post it here just incase there′s someone that can pick up the offer. Here′s his number +15416368040

$${Good}\:{day}\:{friends}.{I}\:{saw}\:{a}\:{post}\:{on}\:{a} \\ $$$${group}\:{chat}\:{where}\:{someone}\:{said}\:{he}\:{needs} \\ $$$${help}\:{on}\:{functional}\:{iteration}.\:{He}\:{said} \\ $$$${he}\:{needs}\:{some}\:{solvings}\:{with}\:{overleaf} \\ $$$${and}\:{also}\:{to}\:{play}\:{the}\:{report}\:{on}\:{latex}.{He}\:{is} \\ $$$${highly}\:{willing}\:{to}\:{pay}\:{so}\:{I}\:{thought}\:{to}\:{myself} \\ $$$${to}\:{post}\:{it}\:{here}\:{just}\:{incase}\:{there}'{s} \\ $$$${someone}\:{that}\:{can}\:{pick}\:{up}\:{the}\:{offer}. \\ $$$$ \\ $$$${Here}'{s}\:{his}\:{number} \\ $$$$ \\ $$$$+\mathrm{15416368040} \\ $$$$ \\ $$$$ \\ $$

Question Number 74554    Answers: 1   Comments: 0

Find the superimum of the set {(n^2 /2^n )}

$$\boldsymbol{{Find}}\:\boldsymbol{{the}}\:\boldsymbol{{superimum}}\:\boldsymbol{{of}}\:\boldsymbol{{the}}\:\boldsymbol{{set}}\:\left\{\frac{\boldsymbol{{n}}^{\mathrm{2}} }{\mathrm{2}^{\boldsymbol{{n}}} }\right\} \\ $$

Question Number 74542    Answers: 1   Comments: 0

∫(ln(x)e^x )dx=???

$$ \\ $$$$ \\ $$$$ \\ $$$$\:\:\:\int\left(\boldsymbol{{ln}}\left(\boldsymbol{{x}}\right)\boldsymbol{{e}}^{\boldsymbol{{x}}} \right)\boldsymbol{{dx}}=??? \\ $$

Question Number 74536    Answers: 1   Comments: 0

find limz⇒0 (xy^2 /x^2 +y^2 ) pleas sir help me

$${find}\:{limz}\Rightarrow\mathrm{0}\:\:\left({xy}^{\mathrm{2}} /{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)\:{pleas}\:{sir}\:{help}\:{me}\: \\ $$

Question Number 74527    Answers: 2   Comments: 1

Question Number 74514    Answers: 1   Comments: 1

calculate ∫_0 ^(2π) (((x−sinθ)dθ)/((x^2 −2x sinθ +1)^2 ))

$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{\left({x}−{sin}\theta\right){d}\theta}{\left({x}^{\mathrm{2}} −\mathrm{2}{x}\:{sin}\theta\:+\mathrm{1}\right)^{\mathrm{2}} } \\ $$

Question Number 74513    Answers: 1   Comments: 1

find f(x)=∫_0 ^π (dθ/(x^2 −2xsin(2θ)+1)) (x real)

$${find}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\pi} \:\:\frac{{d}\theta}{{x}^{\mathrm{2}} −\mathrm{2}{xsin}\left(\mathrm{2}\theta\right)+\mathrm{1}}\:\:\left({x}\:{real}\right) \\ $$

Question Number 74526    Answers: 1   Comments: 0

prove that (1/2)tan^(−1) x=cos^(−1) ((√((1+(√(1+x^2 )))/(2(√(1+x^2 )))))) using substitution x=cos 2θ

$${prove}\:{that} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{tan}^{−\mathrm{1}} {x}={cos}^{−\mathrm{1}} \left(\sqrt{\frac{\mathrm{1}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{\mathrm{2}\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}}\right) \\ $$$${using}\:{substitution}\:{x}={cos}\:\mathrm{2}\theta \\ $$

Question Number 74560    Answers: 0   Comments: 1

Question Number 74522    Answers: 0   Comments: 3

A rope inclined at angle 37° to the horizontal is used to drag a 50kg block along a level floor with an acceleration of 1m/s^2 .The coefficient of friction between the block and the floor is 0.2. What is the tension in the rope?

$${A}\:{rope}\:{inclined}\:{at}\:{angle}\:\mathrm{37}°\:{to}\:{the}\: \\ $$$${horizontal}\:{is}\:{used}\:{to}\:{drag}\:{a}\:\mathrm{50}{kg}\:{block} \\ $$$${along}\:{a}\:{level}\:{floor}\:{with}\:{an}\:{acceleration} \\ $$$${of}\:\mathrm{1}{m}/{s}^{\mathrm{2}} \:.{The}\:{coefficient}\:{of}\:{friction} \\ $$$${between}\:{the}\:{block}\:{and}\:{the}\:{floor}\:{is}\:\mathrm{0}.\mathrm{2}. \\ $$$${What}\:{is}\:{the}\:{tension}\:{in}\:{the}\:{rope}? \\ $$

Question Number 74520    Answers: 1   Comments: 0

  Pg 1344      Pg 1345      Pg 1346      Pg 1347      Pg 1348      Pg 1349      Pg 1350      Pg 1351      Pg 1352      Pg 1353   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com