Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1349

Question Number 70448    Answers: 0   Comments: 0

someone can texting me in whatsapp? someone than know english +584249229498 thanks

$${someone}\:{can}\:{texting}\:{me}\:{in}\:{whatsapp}? \\ $$$${someone}\:{than}\:{know}\:{english} \\ $$$$+\mathrm{584249229498} \\ $$$${thanks} \\ $$

Question Number 70446    Answers: 0   Comments: 4

Question Number 70429    Answers: 3   Comments: 6

Question Number 70425    Answers: 0   Comments: 0

Question Number 70719    Answers: 1   Comments: 0

∫sin (101x)sin^(99) x dx

$$\int\mathrm{sin}\:\left(\mathrm{101x}\right)\mathrm{sin}\:^{\mathrm{99}} \mathrm{x}\:\mathrm{dx} \\ $$

Question Number 70418    Answers: 0   Comments: 0

Question Number 70417    Answers: 1   Comments: 0

Question Number 70395    Answers: 1   Comments: 1

Question Number 70394    Answers: 1   Comments: 0

montrer que sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)

$$\mathrm{montrer}\:\mathrm{que} \\ $$$$\mathrm{sinA}+\mathrm{sinB}+\mathrm{sinC}=\mathrm{4cos}\frac{\mathrm{A}}{\mathrm{2}}\mathrm{cos}\frac{\mathrm{B}}{\mathrm{2}}\mathrm{cos}\frac{\mathrm{C}}{\mathrm{2}} \\ $$

Question Number 70397    Answers: 0   Comments: 1

Question Number 70390    Answers: 0   Comments: 0

Question Number 70423    Answers: 2   Comments: 1

Question Number 70385    Answers: 1   Comments: 0

The value of determinant determinant (((x+2),( x+3),(x+5)),((x+4),( x+6),(x+9)),((x+8),(x+11),(x+15))) is

$$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\mathrm{determinant} \\ $$$$\begin{vmatrix}{{x}+\mathrm{2}}&{\:{x}+\mathrm{3}}&{{x}+\mathrm{5}}\\{{x}+\mathrm{4}}&{\:{x}+\mathrm{6}}&{{x}+\mathrm{9}}\\{{x}+\mathrm{8}}&{{x}+\mathrm{11}}&{{x}+\mathrm{15}}\end{vmatrix}\:\mathrm{is} \\ $$

Question Number 70383    Answers: 0   Comments: 1

If a matrix A is such that 3A^3 +2A^2 +5A+I=0, then A^(−1) is equal to

$$\mathrm{If}\:\mathrm{a}\:\mathrm{matrix}\:{A}\:\mathrm{is}\:\mathrm{such}\:\mathrm{that}\:\mathrm{3}{A}^{\mathrm{3}} +\mathrm{2}{A}^{\mathrm{2}} +\mathrm{5}{A}+{I}=\mathrm{0}, \\ $$$$\mathrm{then}\:{A}^{−\mathrm{1}} \mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$

Question Number 70399    Answers: 1   Comments: 3

Solve x^4 + x^3 −2ax^2 −ax + a^2 = 0, a ∈ R

$$\boldsymbol{{Solve}}\:\:\boldsymbol{{x}}^{\mathrm{4}} \:+\:\boldsymbol{{x}}^{\mathrm{3}} \:−\mathrm{2}\boldsymbol{{ax}}^{\mathrm{2}} \:−\boldsymbol{{ax}}\:+\:\boldsymbol{{a}}^{\mathrm{2}} =\:\mathrm{0},\:\:\boldsymbol{{a}}\:\in\:\mathbb{R} \\ $$

Question Number 70370    Answers: 1   Comments: 4

If gcd(p , q)=1,prove that gcd(p(p+q) , q(p+q) , pq)=1 Related to Q#69939

$${If}\:\:{gcd}\left({p}\:,\:{q}\right)=\mathrm{1},{prove}\:{that} \\ $$$$\:\:\:\:\:{gcd}\left({p}\left({p}+{q}\right)\:,\:{q}\left({p}+{q}\right)\:,\:{pq}\right)=\mathrm{1} \\ $$$$\mathrm{R}\boldsymbol{\mathrm{elated}}\:\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{Q}}#\mathrm{69939} \\ $$

Question Number 70369    Answers: 0   Comments: 1

Question Number 70361    Answers: 0   Comments: 0

Hello si(x)=−∫_x ^∞ ((sin(x))/x)dx show ∫_0 ^(+∞) x^(a−1) si(x)dx=−((Γ(a)sin(((πa)/2)))/a) hint ipp +complex Analysis

$${Hello}\: \\ $$$${si}\left({x}\right)=−\int_{{x}} ^{\infty} \frac{{sin}\left({x}\right)}{{x}}{dx} \\ $$$${show}\:\int_{\mathrm{0}} ^{+\infty} {x}^{{a}−\mathrm{1}} {si}\left({x}\right){dx}=−\frac{\Gamma\left({a}\right){sin}\left(\frac{\pi{a}}{\mathrm{2}}\right)}{{a}} \\ $$$${hint}\:{ipp}\:+{complex}\:{Analysis} \\ $$

Question Number 70312    Answers: 1   Comments: 1

If, (1/a^2 )+(1/b^2 )+(1/c^2 ) = (1/(ab))+(1/(bc))+(1/(ca)) then prove that, a=b=c.

$$\mathrm{If},\:\frac{\mathrm{1}}{\mathrm{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{b}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{c}^{\mathrm{2}} }\:=\:\frac{\mathrm{1}}{\mathrm{ab}}+\frac{\mathrm{1}}{\mathrm{bc}}+\frac{\mathrm{1}}{\mathrm{ca}}\:\mathrm{then}\:\mathrm{prove}\: \\ $$$$\mathrm{that},\:\mathrm{a}=\mathrm{b}=\mathrm{c}. \\ $$

Question Number 70364    Answers: 0   Comments: 3

solve L=lim_(x→0) ((e^x −(1/(1−x)))/x^2 )

$$\mathrm{solve}\:\mathrm{L}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{e}^{\mathrm{x}} −\frac{\mathrm{1}}{\mathrm{1}−\mathrm{x}}}{\mathrm{x}^{\mathrm{2}} } \\ $$

Question Number 70310    Answers: 3   Comments: 1

please help me find the term independent of x in the expansion of (x + (3/x))^(−12 )

$${please}\:{help}\:{me}\:{find}\:{the}\:{term}\:{independent}\:{of}\:{x} \\ $$$${in}\:{the}\:{expansion}\:{of}\: \\ $$$$\:\:\:\:\:\:\left({x}\:+\:\frac{\mathrm{3}}{{x}}\right)^{−\mathrm{12}\:} \\ $$

Question Number 70277    Answers: 2   Comments: 0

Question Number 70270    Answers: 1   Comments: 0

If log_x y = 6 & log_(14x) 8y = 3 then find the value of x & y.

$$\mathrm{If}\:\mathrm{log}_{\mathrm{x}} \mathrm{y}\:=\:\mathrm{6}\:\&\:\mathrm{log}_{\mathrm{14x}} \mathrm{8y}\:=\:\mathrm{3}\:\mathrm{then}\:\mathrm{find}\:\mathrm{the} \\ $$$$\mathrm{value}\:\mathrm{of}\:\mathrm{x}\:\&\:\mathrm{y}. \\ $$

Question Number 70262    Answers: 0   Comments: 1

calculate ∫_0 ^(π/4) ln(cosx)dx and ∫_0 ^(π/4) ln(sinx)dx

$${calculate}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left({cosx}\right){dx}\:\:{and}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left({sinx}\right){dx} \\ $$

Question Number 70256    Answers: 0   Comments: 1

Question Number 70253    Answers: 0   Comments: 3

  Pg 1344      Pg 1345      Pg 1346      Pg 1347      Pg 1348      Pg 1349      Pg 1350      Pg 1351      Pg 1352      Pg 1353   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com