Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1348

Question Number 77506    Answers: 1   Comments: 2

Question Number 77505    Answers: 1   Comments: 1

many three digit multiples of three that can be made from the number 0,1,2,3,4,5,6,7 without repetition?

$${many}\:{three}\: \\ $$$${digit}\:{multiples}\:{of}\:{three}\:{that} \\ $$$${can}\:{be}\:{made}\:{from}\:{the}\:{number} \\ $$$$\mathrm{0},\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4},\mathrm{5},\mathrm{6},\mathrm{7}\:{without}\:{repetition}? \\ $$

Question Number 77504    Answers: 1   Comments: 0

Question Number 77491    Answers: 0   Comments: 0

Question Number 77483    Answers: 0   Comments: 1

solve y′ cos(x) +(1/2) y sin(x) = e^x (√(sin(x)))

$${solve}\: \\ $$$${y}'\:{cos}\left({x}\right)\:+\frac{\mathrm{1}}{\mathrm{2}}\:{y}\:{sin}\left({x}\right)\:=\:{e}^{{x}} \:\sqrt{{sin}\left({x}\right)}\:\: \\ $$

Question Number 77481    Answers: 1   Comments: 0

Question Number 77474    Answers: 1   Comments: 1

Prove ∫_(−1) ^1 (√(1−x^2 )) dx=(π/2)

$${Prove} \\ $$$$\int_{−\mathrm{1}} ^{\mathrm{1}} \sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:{dx}=\frac{\pi}{\mathrm{2}} \\ $$

Question Number 77473    Answers: 0   Comments: 2

Question Number 77472    Answers: 0   Comments: 5

Hello sirs... i want that you explain me how we solve the trigonometric inequality with tangente. we can take for example tan2x≥(√3) i can solve this type of equality but not the inequality! Please i need your help... Even the steps to make graphic to read the solu− tion.

$$\mathrm{Hello}\:\mathrm{sirs}...\: \\ $$$$\mathrm{i}\:\mathrm{want}\:\mathrm{that}\:\mathrm{you}\:\mathrm{explain}\:\mathrm{me}\:\mathrm{how}\: \\ $$$$\:\mathrm{we}\:\mathrm{solve}\:\mathrm{the}\:\mathrm{trigonometric} \\ $$$$\mathrm{inequality}\:\mathrm{with}\:\mathrm{tangente}.\: \\ $$$$\mathrm{we}\:\mathrm{can}\:\mathrm{take}\:\mathrm{for}\:\mathrm{example}\:\mathrm{tan2x}\geqslant\sqrt{\mathrm{3}} \\ $$$$\mathrm{i}\:\mathrm{can}\:\mathrm{solve}\:\mathrm{this}\:\mathrm{type}\:\mathrm{of}\:\mathrm{equality} \\ $$$$\mathrm{but}\:\mathrm{not}\:\mathrm{the}\:\mathrm{inequality}!\:\mathrm{Please}\: \\ $$$$\mathrm{i}\:\mathrm{need}\:\mathrm{your}\:\mathrm{help}...\:\mathrm{Even}\:\mathrm{the}\:\mathrm{steps} \\ $$$$\mathrm{to}\:\mathrm{make}\:\mathrm{graphic}\:\mathrm{to}\:\mathrm{read}\:\mathrm{the}\:\mathrm{solu}− \\ $$$$\mathrm{tion}. \\ $$

Question Number 77464    Answers: 3   Comments: 7

∫_( 0) ^(π/2) ln (2 cos x) dx = ?

$$\underset{\:\:\mathrm{0}} {\int}\:\overset{\frac{\pi}{\mathrm{2}}} {\:}\mathrm{ln}\:\left(\mathrm{2}\:\mathrm{cos}\:{x}\right)\:{dx}\:\:=\:\:? \\ $$

Question Number 77462    Answers: 0   Comments: 0

Question Number 77459    Answers: 1   Comments: 0

the greatest value of n so that only one value of k satisfies (8/(15))<(n/(n+k))<(7/(13)) is

$$ \\ $$$$ \\ $$$${the}\:{greatest}\:{value}\:{of}\:{n}\:{so}\:{that}\: \\ $$$${only}\:{one}\:{value}\:{of}\:{k}\:{satisfies}\: \\ $$$$\frac{\mathrm{8}}{\mathrm{15}}<\frac{{n}}{{n}+{k}}<\frac{\mathrm{7}}{\mathrm{13}}\:{is}\: \\ $$

Question Number 77452    Answers: 0   Comments: 0

∫e^(x^3 +x^2 −1) (3x^4 +2x^2 +2x)dx

$$\int\mathrm{e}^{\mathrm{x}^{\mathrm{3}} +\mathrm{x}^{\mathrm{2}} −\mathrm{1}} \left(\mathrm{3x}^{\mathrm{4}} +\mathrm{2x}^{\mathrm{2}} +\mathrm{2x}\right)\mathrm{dx} \\ $$

Question Number 77451    Answers: 1   Comments: 1

Question Number 77447    Answers: 1   Comments: 0

∫ tan(x) tan(2x) tan(3x) dx

$$\int\:\mathrm{tan}\left(\mathrm{x}\right)\:\mathrm{tan}\left(\mathrm{2x}\right)\:\mathrm{tan}\left(\mathrm{3x}\right)\:\mathrm{dx} \\ $$

Question Number 77442    Answers: 1   Comments: 0

prove that lim_(x→∞) (∣((x^x^2 (x+2)^((x+1)^2 ) )/((x+1)^(2x^2 +2x+1) ))∣)=e

$${prove}\:{that} \\ $$$$\underset{{x}\rightarrow\infty} {{lim}}\:\left(\mid\frac{{x}^{{x}^{\mathrm{2}} } \left({x}+\mathrm{2}\right)^{\left({x}+\mathrm{1}\right)^{\mathrm{2}} } }{\left({x}+\mathrm{1}\right)^{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{1}} }\mid\right)={e} \\ $$

Question Number 77425    Answers: 1   Comments: 2

Question Number 77424    Answers: 0   Comments: 0

∫_0 ^∞ e^((e^x −1)^t (A)) dx A and t are constant

$$\int_{\mathrm{0}} ^{\infty} {e}^{\left({e}^{{x}} −\mathrm{1}\right)^{{t}} \:\left({A}\right)} \:{dx} \\ $$$${A}\:{and}\:{t}\:{are}\:{constant} \\ $$

Question Number 77422    Answers: 1   Comments: 1

can solve ∫ (dx/(x^(17) −1)) via elementary calculus?

$$\mathrm{can}\:\mathrm{solve}\:\int\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{17}} −\mathrm{1}}\:\mathrm{via}\: \\ $$$$\mathrm{elementary}\:\mathrm{calculus}? \\ $$

Question Number 77420    Answers: 0   Comments: 10

Question Number 77412    Answers: 0   Comments: 7

Question Number 77394    Answers: 1   Comments: 4

a 6 digit number formed with the first number is 2 and contains 4 equal number. many number can be made are

$$\mathrm{a}\:\mathrm{6}\:\mathrm{digit}\:\mathrm{number}\:\mathrm{formed}\: \\ $$$$\mathrm{with}\:\mathrm{the}\:\mathrm{first}\:\mathrm{number}\:\mathrm{is}\:\mathrm{2}\:\mathrm{and}\: \\ $$$$\mathrm{contains}\:\mathrm{4}\:\mathrm{equal}\:\mathrm{number}.\:\mathrm{many} \\ $$$$\mathrm{number}\:\mathrm{can}\:\mathrm{be}\:\mathrm{made}\:\mathrm{are}\: \\ $$

Question Number 77390    Answers: 2   Comments: 1

Question Number 77379    Answers: 0   Comments: 0

Question Number 77377    Answers: 0   Comments: 0

Question Number 77367    Answers: 1   Comments: 1

let the cercle (x+1)^(2 ) +(y−3)^2 =9 and the point A(4,1) vrrify that A is out of circle and determine the equation of two tangentes to circle wich passes by point A.

$${let}\:{the}\:{cercle}\:\:\left({x}+\mathrm{1}\right)^{\mathrm{2}\:} +\left({y}−\mathrm{3}\right)^{\mathrm{2}} =\mathrm{9} \\ $$$${and}\:{the}\:{point}\:\:{A}\left(\mathrm{4},\mathrm{1}\right) \\ $$$${vrrify}\:{that}\:\:{A}\:\:{is}\:{out}\:{of}\:{circle} \\ $$$${and}\:\:{determine}\:{the}\:{equation}\:{of} \\ $$$${two}\:{tangentes}\:{to}\:{circle}\:{wich} \\ $$$${passes}\:{by}\:{point}\:{A}. \\ $$

  Pg 1343      Pg 1344      Pg 1345      Pg 1346      Pg 1347      Pg 1348      Pg 1349      Pg 1350      Pg 1351      Pg 1352   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com