Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1345

Question Number 75848    Answers: 2   Comments: 1

∫_0 ^( (𝛑/2)) ((sin4x)/(1+sinx+cosx))dx=?

$$\underset{\mathrm{0}} {\overset{\:\:\:\:\:\:\:\:\frac{\boldsymbol{\pi}}{\mathrm{2}}} {\int}}\frac{\boldsymbol{\mathrm{sin}}\mathrm{4}\boldsymbol{\mathrm{x}}}{\mathrm{1}+\boldsymbol{\mathrm{sinx}}+\boldsymbol{\mathrm{cosx}}}\boldsymbol{\mathrm{dx}}=? \\ $$

Question Number 75840    Answers: 1   Comments: 0

If x^(200) < 3^(300) , then greatest possible integral value of x is _____.

$$\mathrm{If}\:\:{x}^{\mathrm{200}} \:<\:\mathrm{3}^{\mathrm{300}} \:,\:\mathrm{then}\:\mathrm{greatest}\:\mathrm{possible} \\ $$$$\mathrm{integral}\:\mathrm{value}\:\mathrm{of}\:\:\:{x}\:\:\mathrm{is}\:\_\_\_\_\_. \\ $$

Question Number 75838    Answers: 0   Comments: 1

Question Number 75845    Answers: 1   Comments: 2

{ ((x+yz=x^2 )),((y+xz=y^2 )),((z+xy=z^2 )) :} solve for x,y,z.

$$\begin{cases}{\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{yz}}=\boldsymbol{\mathrm{x}}^{\mathrm{2}} }\\{\boldsymbol{\mathrm{y}}+\boldsymbol{\mathrm{xz}}=\boldsymbol{\mathrm{y}}^{\mathrm{2}} }\\{\boldsymbol{\mathrm{z}}+\boldsymbol{\mathrm{xy}}=\boldsymbol{\mathrm{z}}^{\mathrm{2}} }\end{cases}\:\:\:\:\:\boldsymbol{\mathrm{solve}}\:\boldsymbol{\mathrm{for}}\:\boldsymbol{\mathrm{x}},\boldsymbol{\mathrm{y}},\boldsymbol{\mathrm{z}}. \\ $$

Question Number 75830    Answers: 1   Comments: 5

Question Number 75828    Answers: 1   Comments: 1

Σ_(n=1) ^∞ (1/(10^n ))

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{10}^{{n}} } \\ $$

Question Number 75826    Answers: 1   Comments: 1

Question Number 75846    Answers: 2   Comments: 0

sin^5 x+(√2)sinx=1 , x∈[0,2𝛑]

$$\boldsymbol{\mathrm{sin}}^{\mathrm{5}} \boldsymbol{\mathrm{x}}+\sqrt{\mathrm{2}}\boldsymbol{\mathrm{sinx}}=\mathrm{1}\:\:\:\:\:\:\:\:,\:\:\boldsymbol{\mathrm{x}}\in\left[\mathrm{0},\mathrm{2}\boldsymbol{\pi}\right] \\ $$

Question Number 75847    Answers: 0   Comments: 2

{ ((((tgx−tgy)/(1−tgx.tgy))=tg(x/2))),(( ((tgx+tgy)/(1+tgxtgy))=tg(y/2))) :}

$$\begin{cases}{\frac{\boldsymbol{\mathrm{tgx}}−\boldsymbol{\mathrm{tgy}}}{\mathrm{1}−\boldsymbol{\mathrm{tgx}}.\boldsymbol{\mathrm{tgy}}}=\boldsymbol{\mathrm{tg}}\frac{\boldsymbol{\mathrm{x}}}{\mathrm{2}}}\\{\:\:\frac{\boldsymbol{\mathrm{tgx}}+\boldsymbol{\mathrm{tgy}}}{\mathrm{1}+\boldsymbol{\mathrm{tgxtgy}}}=\boldsymbol{\mathrm{tg}}\frac{\boldsymbol{\mathrm{y}}}{\mathrm{2}}}\end{cases} \\ $$

Question Number 75825    Answers: 0   Comments: 0

Question Number 75822    Answers: 0   Comments: 0

Question Number 75821    Answers: 0   Comments: 1

Question Number 75818    Answers: 1   Comments: 3

Given the increasing sequence : 1, 4, 8, 13, ... a. Find U_(2019) b. Find S_(2019) U_n is nth−term of the sequence S_n is sum of n − term of the sequence Arithmetic Sequence Degree Two

$${Given}\:\:{the}\:\:{increasing}\:\:{sequence}\:: \\ $$$$\mathrm{1},\:\mathrm{4},\:\mathrm{8},\:\mathrm{13},\:... \\ $$$${a}.\:{Find}\:\:{U}_{\mathrm{2019}} \\ $$$${b}.\:{Find}\:\:{S}_{\mathrm{2019}} \\ $$$${U}_{{n}} \:\:{is}\:\:{nth}−{term}\:\:{of}\:\:{the}\:\:{sequence} \\ $$$${S}_{{n}} \:\:{is}\:\:{sum}\:\:{of}\:\:{n}\:−\:{term}\:\:{of}\:\:{the}\:\:{sequence} \\ $$$${Arithmetic}\:\:{Sequence}\:\:{Degree}\:\:{Two} \\ $$

Question Number 75814    Answers: 1   Comments: 1

Question Number 75809    Answers: 0   Comments: 2

Question Number 75802    Answers: 1   Comments: 0

A fair die is thrown 4 times. What is the probability of obtaining a 6 twice?

$$\mathrm{A}\:\mathrm{fair}\:\mathrm{die}\:\mathrm{is}\:\mathrm{thrown}\:\mathrm{4}\:\mathrm{times}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the} \\ $$$$\mathrm{probability}\:\mathrm{of}\:\mathrm{obtaining}\:\mathrm{a}\:\mathrm{6}\:\mathrm{twice}? \\ $$

Question Number 75796    Answers: 1   Comments: 0

let be a,b such as a^2 −b^2 =ab find out Z=((a^n +b^n )/(a^n −b^n )) when a≠0

$$\mathrm{let}\:\mathrm{be}\:\mathrm{a},\mathrm{b}\:\mathrm{such}\:\mathrm{as}\:\mathrm{a}^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} =\mathrm{ab} \\ $$$$\mathrm{find}\:\:\mathrm{out}\:\mathrm{Z}=\frac{\mathrm{a}^{\mathrm{n}} +\mathrm{b}^{\mathrm{n}} }{\mathrm{a}^{\mathrm{n}} −\mathrm{b}^{\mathrm{n}} }\:\:\mathrm{when}\:\:\mathrm{a}\neq\mathrm{0} \\ $$$$ \\ $$

Question Number 75795    Answers: 0   Comments: 1

Find out ∫_0 ^∞ ((argsh(x))/x)dx

$$\mathrm{Find}\:\mathrm{out}\:\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{argsh}\left(\mathrm{x}\right)}{\mathrm{x}}\mathrm{dx} \\ $$

Question Number 75793    Answers: 1   Comments: 1

Prove that ∫_0 ^∞ (((arctanx)/(x(√(log2)))))^2 dx= π

$$\mathrm{Prove}\:\mathrm{that}\:\int_{\mathrm{0}} ^{\infty} \left(\frac{\mathrm{arctanx}}{\mathrm{x}\sqrt{\mathrm{log2}}}\right)^{\mathrm{2}} \mathrm{dx}=\:\pi \\ $$

Question Number 75783    Answers: 1   Comments: 1

Question Number 75778    Answers: 1   Comments: 0

if x^2 +y^2 =p, x^3 +y^3 =q, find x^n +y^n in terms of p, q and n. (n≥4)

$${if}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={p},\:{x}^{\mathrm{3}} +{y}^{\mathrm{3}} ={q}, \\ $$$${find}\:{x}^{{n}} +{y}^{{n}} \:{in}\:{terms}\:{of}\:{p},\:{q}\:{and}\:{n}. \\ $$$$\left({n}\geqslant\mathrm{4}\right) \\ $$

Question Number 75773    Answers: 1   Comments: 0

Question Number 75772    Answers: 0   Comments: 0

Question Number 75771    Answers: 0   Comments: 2

Question Number 75770    Answers: 3   Comments: 6

Question Number 75769    Answers: 0   Comments: 0

  Pg 1340      Pg 1341      Pg 1342      Pg 1343      Pg 1344      Pg 1345      Pg 1346      Pg 1347      Pg 1348      Pg 1349   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com