Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1345
Question Number 75848 Answers: 2 Comments: 1
$$\underset{\mathrm{0}} {\overset{\:\:\:\:\:\:\:\:\frac{\boldsymbol{\pi}}{\mathrm{2}}} {\int}}\frac{\boldsymbol{\mathrm{sin}}\mathrm{4}\boldsymbol{\mathrm{x}}}{\mathrm{1}+\boldsymbol{\mathrm{sinx}}+\boldsymbol{\mathrm{cosx}}}\boldsymbol{\mathrm{dx}}=? \\ $$
Question Number 75840 Answers: 1 Comments: 0
$$\mathrm{If}\:\:{x}^{\mathrm{200}} \:<\:\mathrm{3}^{\mathrm{300}} \:,\:\mathrm{then}\:\mathrm{greatest}\:\mathrm{possible} \\ $$$$\mathrm{integral}\:\mathrm{value}\:\mathrm{of}\:\:\:{x}\:\:\mathrm{is}\:\_\_\_\_\_. \\ $$
Question Number 75838 Answers: 0 Comments: 1
Question Number 75845 Answers: 1 Comments: 2
$$\begin{cases}{\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{yz}}=\boldsymbol{\mathrm{x}}^{\mathrm{2}} }\\{\boldsymbol{\mathrm{y}}+\boldsymbol{\mathrm{xz}}=\boldsymbol{\mathrm{y}}^{\mathrm{2}} }\\{\boldsymbol{\mathrm{z}}+\boldsymbol{\mathrm{xy}}=\boldsymbol{\mathrm{z}}^{\mathrm{2}} }\end{cases}\:\:\:\:\:\boldsymbol{\mathrm{solve}}\:\boldsymbol{\mathrm{for}}\:\boldsymbol{\mathrm{x}},\boldsymbol{\mathrm{y}},\boldsymbol{\mathrm{z}}. \\ $$
Question Number 75830 Answers: 1 Comments: 5
Question Number 75828 Answers: 1 Comments: 1
$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{10}^{{n}} } \\ $$
Question Number 75826 Answers: 1 Comments: 1
Question Number 75846 Answers: 2 Comments: 0
$$\boldsymbol{\mathrm{sin}}^{\mathrm{5}} \boldsymbol{\mathrm{x}}+\sqrt{\mathrm{2}}\boldsymbol{\mathrm{sinx}}=\mathrm{1}\:\:\:\:\:\:\:\:,\:\:\boldsymbol{\mathrm{x}}\in\left[\mathrm{0},\mathrm{2}\boldsymbol{\pi}\right] \\ $$
Question Number 75847 Answers: 0 Comments: 2
$$\begin{cases}{\frac{\boldsymbol{\mathrm{tgx}}−\boldsymbol{\mathrm{tgy}}}{\mathrm{1}−\boldsymbol{\mathrm{tgx}}.\boldsymbol{\mathrm{tgy}}}=\boldsymbol{\mathrm{tg}}\frac{\boldsymbol{\mathrm{x}}}{\mathrm{2}}}\\{\:\:\frac{\boldsymbol{\mathrm{tgx}}+\boldsymbol{\mathrm{tgy}}}{\mathrm{1}+\boldsymbol{\mathrm{tgxtgy}}}=\boldsymbol{\mathrm{tg}}\frac{\boldsymbol{\mathrm{y}}}{\mathrm{2}}}\end{cases} \\ $$
Question Number 75825 Answers: 0 Comments: 0
Question Number 75822 Answers: 0 Comments: 0
Question Number 75821 Answers: 0 Comments: 1
Question Number 75818 Answers: 1 Comments: 3
$${Given}\:\:{the}\:\:{increasing}\:\:{sequence}\:: \\ $$$$\mathrm{1},\:\mathrm{4},\:\mathrm{8},\:\mathrm{13},\:... \\ $$$${a}.\:{Find}\:\:{U}_{\mathrm{2019}} \\ $$$${b}.\:{Find}\:\:{S}_{\mathrm{2019}} \\ $$$${U}_{{n}} \:\:{is}\:\:{nth}−{term}\:\:{of}\:\:{the}\:\:{sequence} \\ $$$${S}_{{n}} \:\:{is}\:\:{sum}\:\:{of}\:\:{n}\:−\:{term}\:\:{of}\:\:{the}\:\:{sequence} \\ $$$${Arithmetic}\:\:{Sequence}\:\:{Degree}\:\:{Two} \\ $$
Question Number 75814 Answers: 1 Comments: 1
Question Number 75809 Answers: 0 Comments: 2
Question Number 75802 Answers: 1 Comments: 0
$$\mathrm{A}\:\mathrm{fair}\:\mathrm{die}\:\mathrm{is}\:\mathrm{thrown}\:\mathrm{4}\:\mathrm{times}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the} \\ $$$$\mathrm{probability}\:\mathrm{of}\:\mathrm{obtaining}\:\mathrm{a}\:\mathrm{6}\:\mathrm{twice}? \\ $$
Question Number 75796 Answers: 1 Comments: 0
$$\mathrm{let}\:\mathrm{be}\:\mathrm{a},\mathrm{b}\:\mathrm{such}\:\mathrm{as}\:\mathrm{a}^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} =\mathrm{ab} \\ $$$$\mathrm{find}\:\:\mathrm{out}\:\mathrm{Z}=\frac{\mathrm{a}^{\mathrm{n}} +\mathrm{b}^{\mathrm{n}} }{\mathrm{a}^{\mathrm{n}} −\mathrm{b}^{\mathrm{n}} }\:\:\mathrm{when}\:\:\mathrm{a}\neq\mathrm{0} \\ $$$$ \\ $$
Question Number 75795 Answers: 0 Comments: 1
$$\mathrm{Find}\:\mathrm{out}\:\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{argsh}\left(\mathrm{x}\right)}{\mathrm{x}}\mathrm{dx} \\ $$
Question Number 75793 Answers: 1 Comments: 1
$$\mathrm{Prove}\:\mathrm{that}\:\int_{\mathrm{0}} ^{\infty} \left(\frac{\mathrm{arctanx}}{\mathrm{x}\sqrt{\mathrm{log2}}}\right)^{\mathrm{2}} \mathrm{dx}=\:\pi \\ $$
Question Number 75783 Answers: 1 Comments: 1
Question Number 75778 Answers: 1 Comments: 0
$${if}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={p},\:{x}^{\mathrm{3}} +{y}^{\mathrm{3}} ={q}, \\ $$$${find}\:{x}^{{n}} +{y}^{{n}} \:{in}\:{terms}\:{of}\:{p},\:{q}\:{and}\:{n}. \\ $$$$\left({n}\geqslant\mathrm{4}\right) \\ $$
Question Number 75773 Answers: 1 Comments: 0
Question Number 75772 Answers: 0 Comments: 0
Question Number 75771 Answers: 0 Comments: 2
Question Number 75770 Answers: 3 Comments: 6
Question Number 75769 Answers: 0 Comments: 0
Pg 1340 Pg 1341 Pg 1342 Pg 1343 Pg 1344 Pg 1345 Pg 1346 Pg 1347 Pg 1348 Pg 1349
Terms of Service
Privacy Policy
Contact: info@tinkutara.com