Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1345

Question Number 77132    Answers: 0   Comments: 1

Question Number 77129    Answers: 1   Comments: 0

solve in R ∣tan2x∣−(√3)≥0

$$\mathrm{solve}\:\mathrm{in}\:\mathrm{R} \\ $$$$\mid\mathrm{tan2}{x}\mid−\sqrt{\mathrm{3}}\geqslant\mathrm{0} \\ $$

Question Number 77128    Answers: 2   Comments: 0

Find the value of constant “a” such that axe^(−x ) is a solution of Differential equation (d^2 y/dx^2 )+3(dy/dx)+2y=2e^(−x) solve D.E for which y=1 and (dy/dx)=3 when x=0

$${Find}\:{the}\:{value}\:{of}\:{constant} \\ $$$$``{a}''\:{such}\:{that}\:{axe}^{−{x}\:} {is} \\ $$$${a}\:{solution}\:{of}\:{Differential} \\ $$$${equation} \\ $$$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }+\mathrm{3}\frac{{dy}}{{dx}}+\mathrm{2}{y}=\mathrm{2}{e}^{−{x}} \\ $$$${solve}\:{D}.{E}\:{for}\:\:{which} \\ $$$${y}=\mathrm{1}\:{and}\:\frac{{dy}}{{dx}}=\mathrm{3}\:{when} \\ $$$${x}=\mathrm{0} \\ $$

Question Number 77127    Answers: 2   Comments: 0

Prove that line lx+my+n=0 is tangent to the ellipse (x^2 /a^2 )+(y^2 /b^(2 ) )=1 if a^2 l^2 +b^2 m^2 =n^2

$${Prove}\:{that}\:{line}\:{lx}+{my}+{n}=\mathrm{0} \\ $$$${is}\:{tangent}\:{to}\:{the}\:{ellipse} \\ $$$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}\:} }=\mathrm{1}\:{if}\:{a}^{\mathrm{2}} {l}^{\mathrm{2}} +{b}^{\mathrm{2}} {m}^{\mathrm{2}} ={n}^{\mathrm{2}} \\ $$

Question Number 77126    Answers: 1   Comments: 0

1)Express (x/((1−x)^4 )) in partial fraction 2) Solve xdy+ydy−(((xdx−ydy)/(x^2 +y^2 )))=0

$$\left.\mathrm{1}\right){Express}\:\frac{{x}}{\left(\mathrm{1}−{x}\right)^{\mathrm{4}} }\:\:\:{in} \\ $$$${partial}\:{fraction} \\ $$$$\left.\mathrm{2}\right)\:{Solve} \\ $$$${xdy}+{ydy}−\left(\frac{{xdx}−{ydy}}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\right)=\mathrm{0} \\ $$$$ \\ $$

Question Number 77123    Answers: 1   Comments: 0

ABC is a non−right triangle. 1) Demonstrate that tan(A^ +B^ )=−tanC^ . 1) By using tan(A^ +B^ )=((tanA^ +tanB^ )/(1−tanA^ tanB^ )) prove that tanA^ +tanB^ +tanC^ =tanAtanBtanC please i need your help

$$\mathrm{ABC}\:\mathrm{is}\:\mathrm{a}\:\mathrm{non}−\mathrm{right}\:\mathrm{triangle}. \\ $$$$\left.\mathrm{1}\right)\:\mathrm{Demonstrate}\:\mathrm{that} \\ $$$$\mathrm{tan}\left(\hat {\mathrm{A}}+\hat {\mathrm{B}}\right)=−\mathrm{tan}\hat {\mathrm{C}}. \\ $$$$\left.\mathrm{1}\right)\:\mathrm{By}\:\mathrm{using}\:\mathrm{tan}\left(\hat {\mathrm{A}}+\hat {\mathrm{B}}\right)=\frac{\mathrm{tan}\hat {\mathrm{A}}+\mathrm{tan}\hat {\mathrm{B}}}{\mathrm{1}−\mathrm{tan}\hat {\mathrm{A}tan}\hat {\mathrm{B}}} \\ $$$$\mathrm{prove}\:\mathrm{that}\:\mathrm{tan}\hat {\mathrm{A}}+\mathrm{tan}\hat {\mathrm{B}}+\mathrm{tan}\hat {\mathrm{C}}=\mathrm{tanAtanBtanC} \\ $$$$\mathrm{please}\:\mathrm{i}\:\mathrm{need}\:\mathrm{your}\:\mathrm{help} \\ $$

Question Number 77119    Answers: 2   Comments: 0

suppose the equations x^2 +px+4=0 and x^2 +qx+3=0 have a common root, write this root in terms of the other root.

$${suppose}\:{the}\:{equations}\:{x}^{\mathrm{2}} +{px}+\mathrm{4}=\mathrm{0} \\ $$$${and}\:{x}^{\mathrm{2}} +{qx}+\mathrm{3}=\mathrm{0}\:\:{have}\:{a}\:{common}\:{root}, \\ $$$${write}\:{this}\:{root}\:{in}\:{terms}\:{of}\:{the}\:{other}\:{root}. \\ $$

Question Number 77117    Answers: 0   Comments: 0

Interview indicates that all the 4 maths students,5 physics and 7 chemistry students who applied for a scholarship in their respective disciplines qualified for an award. In how many ways the aeard can be made if; (i)only one scholarship is available in each of the disciplines (ii)only two scholarships are availablr in each of the disciplines.

$${Interview}\:{indicates}\:{that}\:{all}\:{the}\:\mathrm{4}\:{maths} \\ $$$${students},\mathrm{5}\:{physics}\:{and}\:\mathrm{7}\:{chemistry} \\ $$$${students}\:{who}\:{applied}\:{for}\:{a}\:{scholarship} \\ $$$${in}\:{their}\:{respective}\:{disciplines}\:{qualified} \\ $$$${for}\:{an}\:{award}.\:{In}\:{how}\:{many}\:{ways}\:{the}\:{aeard} \\ $$$${can}\:{be}\:{made}\:{if}; \\ $$$$\left({i}\right){only}\:{one}\:{scholarship}\:{is}\:{available}\:{in} \\ $$$${each}\:{of}\:{the}\:{disciplines} \\ $$$$\left({ii}\right){only}\:{two}\:{scholarships}\:{are}\:{availablr} \\ $$$${in}\:{each}\:{of}\:{the}\:{disciplines}. \\ $$

Question Number 77103    Answers: 1   Comments: 1

Question Number 77091    Answers: 0   Comments: 3

Question Number 77089    Answers: 0   Comments: 2

Cheap ⇊ ∫(√(x/(√(x/(√(x/(...)))))))dx

$$\boldsymbol{{Cheap}}\:\downdownarrows \\ $$$$\int\sqrt{\frac{\boldsymbol{{x}}}{\sqrt{\frac{\boldsymbol{{x}}}{\sqrt{\frac{\boldsymbol{{x}}}{...}}}}}}\boldsymbol{{dx}} \\ $$$$ \\ $$$$ \\ $$

Question Number 77087    Answers: 1   Comments: 1

∫_0 ^(a/2) x^2 (a^2 −x^2 )^((−3)/2) dx Help!!!

$$\int_{\mathrm{0}} ^{\frac{\boldsymbol{{a}}}{\mathrm{2}}} \boldsymbol{{x}}^{\mathrm{2}} \left(\boldsymbol{{a}}^{\mathrm{2}} −\boldsymbol{{x}}^{\mathrm{2}} \right)^{\frac{−\mathrm{3}}{\mathrm{2}}} \boldsymbol{{dx}} \\ $$$$\boldsymbol{{Help}}!!! \\ $$$$ \\ $$

Question Number 77086    Answers: 1   Comments: 2

∫_0 ^1 xtan^(−1) xdx

$$\int_{\mathrm{0}} ^{\mathrm{1}} {xtan}^{−\mathrm{1}} {xdx} \\ $$$$ \\ $$

Question Number 77067    Answers: 1   Comments: 2

Question Number 77066    Answers: 0   Comments: 5

Question Number 77057    Answers: 1   Comments: 2

Question Number 77046    Answers: 1   Comments: 0

x=R^2 (√(1−(t^2 /R^2 )))

$${x}={R}^{\mathrm{2}} \sqrt{\mathrm{1}−\frac{{t}^{\mathrm{2}} }{{R}^{\mathrm{2}} }}\: \\ $$

Question Number 77041    Answers: 2   Comments: 0

solve in [0;π] sinx−sin^3 x=1−cos2x

$$\mathrm{solve}\:\mathrm{in}\:\left[\mathrm{0};\pi\right] \\ $$$$\mathrm{sin}{x}−\mathrm{sin}^{\mathrm{3}} {x}=\mathrm{1}−\mathrm{cos2}{x} \\ $$

Question Number 77036    Answers: 0   Comments: 12

Question Number 77035    Answers: 1   Comments: 0

Solve for x in: (i) (2(x+3)−3(x−2))(2x−1)≥0 (ii)(x−1)(2x+3)(x+1)(x+3)≤1

$${Solve}\:{for}\:{x}\:{in}: \\ $$$$\left({i}\right)\:\left(\mathrm{2}\left({x}+\mathrm{3}\right)−\mathrm{3}\left({x}−\mathrm{2}\right)\right)\left(\mathrm{2}{x}−\mathrm{1}\right)\geqslant\mathrm{0} \\ $$$$\left({ii}\right)\left({x}−\mathrm{1}\right)\left(\mathrm{2}{x}+\mathrm{3}\right)\left({x}+\mathrm{1}\right)\left({x}+\mathrm{3}\right)\leqslant\mathrm{1} \\ $$

Question Number 77033    Answers: 0   Comments: 1

Suppose the population models of London and Hongkong in tens of thousands are p(t)=((20t)/(t+1)) and q(t)=((240t)/(t+8)) respectively for t years after 2015, Determine the time period in years when the population of London exceeds that of HongKong.

$${Suppose}\:{the}\:{population}\:{models}\:{of}\:{London} \\ $$$${and}\:{Hongkong}\:{in}\:{tens}\:{of}\:{thousands}\:{are} \\ $$$${p}\left({t}\right)=\frac{\mathrm{20}{t}}{{t}+\mathrm{1}}\:{and}\:{q}\left({t}\right)=\frac{\mathrm{240}{t}}{{t}+\mathrm{8}}\:{respectively}\:{for} \\ $$$${t}\:{years}\:{after}\:\mathrm{2015},\:{Determine}\:{the}\:{time}\:{period} \\ $$$${in}\:{years}\:{when}\:{the}\:{population}\:{of}\:{London} \\ $$$${exceeds}\:{that}\:{of}\:{HongKong}. \\ $$

Question Number 77028    Answers: 1   Comments: 0

Question Number 77027    Answers: 1   Comments: 0

Please help me to solve it in [−π;0] cos2x+cosx+1=sin3x+sin2x+sinx Explain details if possible.

$$\mathrm{Please}\:\mathrm{help}\:\mathrm{me}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{it}\:\mathrm{in}\:\left[−\pi;\mathrm{0}\right] \\ $$$$\mathrm{cos2}{x}+\mathrm{cos}{x}+\mathrm{1}=\mathrm{sin3}{x}+\mathrm{sin2}{x}+\mathrm{sin}{x} \\ $$$${E}\mathrm{xplain}\:\mathrm{details}\:\mathrm{if}\:\mathrm{possible}. \\ $$$$ \\ $$

Question Number 77026    Answers: 2   Comments: 2

Question Number 77024    Answers: 1   Comments: 0

The possible value of p for which graph of the function f(x)=2p^2 − 3ptan x+tan^2 x+1 does not lie below x-axis for all x∈(((−Π)/2),(Π/2)) is (a)0 (b)4 (c)3 (d)8

$$\mathrm{The}\:\mathrm{possible}\:\mathrm{value}\:\mathrm{of}\:\mathrm{p}\:\mathrm{for}\:\mathrm{which}\: \\ $$$$\mathrm{graph}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{2p}^{\mathrm{2}} − \\ $$$$\mathrm{3ptan}\:\mathrm{x}+\mathrm{tan}\:^{\mathrm{2}} \mathrm{x}+\mathrm{1}\:\mathrm{does}\:\mathrm{not}\:\mathrm{lie}\:\mathrm{below}\: \\ $$$$\mathrm{x}-\mathrm{axis}\:\mathrm{for}\:\mathrm{all}\:\mathrm{x}\in\left(\frac{−\Pi}{\mathrm{2}},\frac{\Pi}{\mathrm{2}}\right)\:\mathrm{is} \\ $$$$\left(\mathrm{a}\right)\mathrm{0}\:\:\:\:\:\:\left(\mathrm{b}\right)\mathrm{4}\:\:\:\:\:\:\:\:\left(\mathrm{c}\right)\mathrm{3}\:\:\:\:\:\:\:\:\left(\mathrm{d}\right)\mathrm{8} \\ $$

Question Number 77015    Answers: 0   Comments: 1

  Pg 1340      Pg 1341      Pg 1342      Pg 1343      Pg 1344      Pg 1345      Pg 1346      Pg 1347      Pg 1348      Pg 1349   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com