Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1344

Question Number 75930    Answers: 0   Comments: 0

consider the function f(x) = { ((1+2x^2 , if x is rational)),((1 + x^4 , if x is irrational)) :} Use the sandwich(pinchin) theorem to prove that lim_(x→0) f(x) = 1.

$${consider}\:{the}\:{function} \\ $$$$\:{f}\left({x}\right)\:=\:\begin{cases}{\mathrm{1}+\mathrm{2}{x}^{\mathrm{2}} ,\:{if}\:{x}\:{is}\:{rational}}\\{\mathrm{1}\:+\:{x}^{\mathrm{4}} ,\:{if}\:{x}\:{is}\:{irrational}}\end{cases} \\ $$$${Use}\:{the}\:{sandwich}\left({pinchin}\right)\:{theorem}\:{to} \\ $$$${prove}\:{that}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:{f}\left({x}\right)\:=\:\mathrm{1}. \\ $$

Question Number 75929    Answers: 0   Comments: 2

Evaluate lim_(x→−∞) [(√(1−xe^x )) ]

$${Evaluate} \\ $$$$\underset{{x}\rightarrow−\infty} {\:\mathrm{lim}}\:\left[\sqrt{\mathrm{1}−{xe}^{{x}} }\:\right] \\ $$

Question Number 75925    Answers: 0   Comments: 0

Let OA^(→) = i+3j−2k and OB^(→) =3i+j−2k. The vector OC^(→) bisecting the ∠AOB and C being a point on the line AB is

$$\mathrm{Let}\:\overset{\rightarrow} {{OA}}=\:\boldsymbol{\mathrm{i}}+\mathrm{3}\boldsymbol{\mathrm{j}}−\mathrm{2}\boldsymbol{\mathrm{k}}\:\mathrm{and}\:\overset{\rightarrow} {{OB}}=\mathrm{3}\boldsymbol{\mathrm{i}}+\boldsymbol{\mathrm{j}}−\mathrm{2}\boldsymbol{\mathrm{k}}. \\ $$$$\mathrm{The}\:\mathrm{vector}\:\overset{\rightarrow} {{OC}}\:\mathrm{bisecting}\:\mathrm{the}\:\angle{AOB}\:\mathrm{and} \\ $$$${C}\:\:\mathrm{being}\:\mathrm{a}\:\mathrm{point}\:\mathrm{on}\:\mathrm{the}\:\mathrm{line}\:{AB}\:\mathrm{is} \\ $$

Question Number 75924    Answers: 0   Comments: 3

Thr value of ∫_(0 ) ^(π/2) cosec (x−(π/3))cosec (x−(π/6))dx is

$$\mathrm{Thr}\:\mathrm{value}\:\mathrm{of} \\ $$$$\:\underset{\mathrm{0}\:} {\overset{\pi/\mathrm{2}} {\int}}\mathrm{cosec}\:\left({x}−\frac{\pi}{\mathrm{3}}\right)\mathrm{cosec}\:\left({x}−\frac{\pi}{\mathrm{6}}\right){dx}\:\:\mathrm{is} \\ $$

Question Number 75921    Answers: 0   Comments: 1

Question Number 75916    Answers: 0   Comments: 1

x^3 +x^2 −24x+36=0 prove that x=2,3,−6.

$${x}^{\mathrm{3}} +{x}^{\mathrm{2}} −\mathrm{24}{x}+\mathrm{36}=\mathrm{0} \\ $$$${prove}\:{that}\:{x}=\mathrm{2},\mathrm{3},−\mathrm{6}. \\ $$

Question Number 75913    Answers: 0   Comments: 1

x^3 −7x+6=0 prove that x=2,−3,1 .

$${x}^{\mathrm{3}} −\mathrm{7}{x}+\mathrm{6}=\mathrm{0} \\ $$$${prove}\:{that}\:{x}=\mathrm{2},−\mathrm{3},\mathrm{1}\:. \\ $$

Question Number 75918    Answers: 1   Comments: 0

Question Number 75917    Answers: 0   Comments: 0

Question Number 75905    Answers: 0   Comments: 1

Question Number 75902    Answers: 1   Comments: 1

Question Number 75901    Answers: 1   Comments: 0

Question Number 75899    Answers: 0   Comments: 0

A group of 30 men participate in a survey of telecom companies. The number of men who use both Idea and Airtel internet was equal to the number of men who use neither of these inernets. The number of men who use Idea is 4 more than those who use Airtel. How many use Airtel internet.

$$\mathrm{A}\:\mathrm{group}\:\mathrm{of}\:\mathrm{30}\:\mathrm{men}\:\mathrm{participate}\:\mathrm{in}\:\mathrm{a}\: \\ $$$$\mathrm{survey}\:\mathrm{of}\:\mathrm{telecom}\:\mathrm{companies}.\:\mathrm{The} \\ $$$$\mathrm{number}\:\mathrm{of}\:\mathrm{men}\:\mathrm{who}\:\mathrm{use}\:\mathrm{both}\:\mathrm{Idea}\: \\ $$$$\mathrm{and}\:\mathrm{Airtel}\:\mathrm{internet}\:\mathrm{was}\:\mathrm{equal}\:\mathrm{to} \\ $$$$\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{men}\:\mathrm{who}\:\mathrm{use}\:\mathrm{neither} \\ $$$$\mathrm{of}\:\mathrm{these}\:\mathrm{inernets}.\:\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{men} \\ $$$$\mathrm{who}\:\mathrm{use}\:\mathrm{Idea}\:\mathrm{is}\:\mathrm{4}\:\mathrm{more}\:\mathrm{than}\:\mathrm{those} \\ $$$$\mathrm{who}\:\mathrm{use}\:\mathrm{Airtel}.\:\mathrm{How}\:\mathrm{many}\:\mathrm{use}\:\mathrm{Airtel} \\ $$$$\mathrm{internet}. \\ $$

Question Number 75896    Answers: 1   Comments: 0

One pipe can fill a tank in 40 minutes and an outlet pipe can empty the full tank in 24 minutes. If both the pipes are opened simultaneously, what time will it take for the full tank to be emptied?

$$\mathrm{One}\:\mathrm{pipe}\:\mathrm{can}\:\mathrm{fill}\:\mathrm{a}\:\mathrm{tank}\:\mathrm{in}\:\mathrm{40}\:\mathrm{minutes} \\ $$$$\mathrm{and}\:\mathrm{an}\:\mathrm{outlet}\:\mathrm{pipe}\:\mathrm{can}\:\mathrm{empty}\:\mathrm{the}\:\mathrm{full} \\ $$$$\mathrm{tank}\:\mathrm{in}\:\mathrm{24}\:\mathrm{minutes}.\:\mathrm{If}\:\mathrm{both}\:\mathrm{the}\:\mathrm{pipes} \\ $$$$\mathrm{are}\:\mathrm{opened}\:\mathrm{simultaneously},\:\mathrm{what}\:\mathrm{time} \\ $$$$\mathrm{will}\:\mathrm{it}\:\mathrm{take}\:\mathrm{for}\:\mathrm{the}\:\mathrm{full}\:\mathrm{tank}\:\mathrm{to}\:\mathrm{be} \\ $$$$\mathrm{emptied}? \\ $$

Question Number 75895    Answers: 1   Comments: 0

A garrison had provisions for 1500 men for 30 days. After some days, 300 more men joined the garrison. The provisions lasted for a total of 26 days from the beginning. After how many days did the new men join?

$$\mathrm{A}\:\mathrm{garrison}\:\mathrm{had}\:\mathrm{provisions}\:\mathrm{for}\:\mathrm{1500}\:\mathrm{men} \\ $$$$\mathrm{for}\:\mathrm{30}\:\mathrm{days}.\:\mathrm{After}\:\mathrm{some}\:\mathrm{days},\:\mathrm{300}\:\mathrm{more} \\ $$$$\mathrm{men}\:\mathrm{joined}\:\mathrm{the}\:\mathrm{garrison}.\:\mathrm{The}\:\mathrm{provisions} \\ $$$$\mathrm{lasted}\:\mathrm{for}\:\mathrm{a}\:\mathrm{total}\:\mathrm{of}\:\mathrm{26}\:\mathrm{days}\:\mathrm{from}\:\mathrm{the} \\ $$$$\mathrm{beginning}.\:\mathrm{After}\:\mathrm{how}\:\mathrm{many}\:\mathrm{days}\:\mathrm{did} \\ $$$$\mathrm{the}\:\mathrm{new}\:\mathrm{men}\:\mathrm{join}? \\ $$

Question Number 75894    Answers: 0   Comments: 0

When 616 is divided by a certain positive number, which is 66(2/3)% of the quotient, it leaves 16 as the remainder. Find the divisor.

$$\mathrm{When}\:\mathrm{616}\:\mathrm{is}\:\mathrm{divided}\:\mathrm{by}\:\mathrm{a}\:\mathrm{certain}\: \\ $$$$\mathrm{positive}\:\mathrm{number},\:\mathrm{which}\:\mathrm{is}\:\mathrm{66}\frac{\mathrm{2}}{\mathrm{3}}\%\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{quotient},\:\mathrm{it}\:\mathrm{leaves}\:\mathrm{16}\:\mathrm{as}\:\mathrm{the}\:\mathrm{remainder}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{divisor}. \\ $$

Question Number 75890    Answers: 0   Comments: 0

calculate ∫_0 ^∞ ((arctan(2x+3))/(x^2 +4))dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left(\mathrm{2}{x}+\mathrm{3}\right)}{{x}^{\mathrm{2}} +\mathrm{4}}{dx} \\ $$

Question Number 75889    Answers: 0   Comments: 0

find ∫ (√((x+1)(x+2)(2x−1)))dx

$${find}\:\int\:\sqrt{\left({x}+\mathrm{1}\right)\left({x}+\mathrm{2}\right)\left(\mathrm{2}{x}−\mathrm{1}\right)}{dx} \\ $$

Question Number 75888    Answers: 0   Comments: 1

find ∫_0 ^1 (√(1+x^4 ))dx

$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}+{x}^{\mathrm{4}} }{dx} \\ $$

Question Number 75883    Answers: 0   Comments: 2

If a^4 + b^4 + c^4 + d^4 = 16 Prove that, a^5 + b^5 + c^5 + d^5 ≤ 32

$$\mathrm{If}\:\:\:\:\mathrm{a}^{\mathrm{4}} \:+\:\mathrm{b}^{\mathrm{4}} \:+\:\mathrm{c}^{\mathrm{4}} \:+\:\mathrm{d}^{\mathrm{4}} \:\:\:=\:\:\:\mathrm{16} \\ $$$$\mathrm{Prove}\:\mathrm{that},\:\:\:\:\:\:\:\:\mathrm{a}^{\mathrm{5}} \:+\:\mathrm{b}^{\mathrm{5}} \:+\:\mathrm{c}^{\mathrm{5}} \:+\:\mathrm{d}^{\mathrm{5}} \:\:\:\leqslant\:\:\:\mathrm{32} \\ $$

Question Number 75879    Answers: 1   Comments: 0

Question Number 75873    Answers: 1   Comments: 0

∫xe^x dx

$$\int{xe}^{{x}} {dx} \\ $$

Question Number 75868    Answers: 0   Comments: 0

PROVE THAT sin3° sin39° sin75° = sin 9° sin 24° sin 30°

$${PROVE}\:\:{THAT} \\ $$$$ \\ $$$$\mathrm{sin3}°\:\mathrm{sin39}°\:\mathrm{sin75}°\:=\:\mathrm{sin}\:\mathrm{9}°\:\mathrm{sin}\:\mathrm{24}°\:\mathrm{sin}\:\mathrm{30}° \\ $$

Question Number 75860    Answers: 1   Comments: 0

complete and balance S+HNO_3 →

$${complete}\:{and}\:{balance}\: \\ $$$${S}+{HNO}_{\mathrm{3}} \rightarrow \\ $$$$ \\ $$

Question Number 75851    Answers: 1   Comments: 0

Question Number 75849    Answers: 0   Comments: 0

In a AB^△ C: { ((a+b+c=2(h_a +h_b +h_c ))),((a^2 +b^2 +c^2 =6abc)),((h_a ^2 +h_b ^2 +h_c ^2 =6h_a .h_b .h_c )) :} find:∡A

$$\boldsymbol{\mathrm{In}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{A}}\overset{\bigtriangleup} {\boldsymbol{\mathrm{B}C}}: \\ $$$$\begin{cases}{\boldsymbol{\mathrm{a}}+\boldsymbol{\mathrm{b}}+\boldsymbol{\mathrm{c}}=\mathrm{2}\left(\boldsymbol{\mathrm{h}}_{\boldsymbol{\mathrm{a}}} +\boldsymbol{\mathrm{h}}_{\boldsymbol{\mathrm{b}}} +\boldsymbol{\mathrm{h}}_{\boldsymbol{\mathrm{c}}} \right)}\\{\boldsymbol{\mathrm{a}}^{\mathrm{2}} +\boldsymbol{\mathrm{b}}^{\mathrm{2}} +\boldsymbol{\mathrm{c}}^{\mathrm{2}} =\mathrm{6}\boldsymbol{\mathrm{abc}}}\\{\boldsymbol{\mathrm{h}}_{\boldsymbol{\mathrm{a}}} ^{\mathrm{2}} +\boldsymbol{\mathrm{h}}_{\boldsymbol{\mathrm{b}}} ^{\mathrm{2}} +\boldsymbol{\mathrm{h}}_{\boldsymbol{\mathrm{c}}} ^{\mathrm{2}} =\mathrm{6}\boldsymbol{\mathrm{h}}_{\boldsymbol{\mathrm{a}}} .\boldsymbol{\mathrm{h}}_{\boldsymbol{\mathrm{b}}} .\boldsymbol{\mathrm{h}}_{\boldsymbol{\mathrm{c}}} }\end{cases} \\ $$$$\boldsymbol{\mathrm{find}}:\measuredangle\boldsymbol{\mathrm{A}} \\ $$

  Pg 1339      Pg 1340      Pg 1341      Pg 1342      Pg 1343      Pg 1344      Pg 1345      Pg 1346      Pg 1347      Pg 1348   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com