Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1344

Question Number 77213    Answers: 0   Comments: 3

Question Number 77208    Answers: 0   Comments: 1

some thoughts on this forum... we cannot solve the unanswered questions much greater mathematicians haven′t been able to solve yet thus it makes absolutely no sense to post them here also it makes no sense to post problems from books or from the www if you don′t have the foggiest idea of their meaning or how to solve them. it might be fun for us to solve some of them but mostly it′s like casting pearls...

$$\mathrm{some}\:\mathrm{thoughts}\:\mathrm{on}\:\mathrm{this}\:\mathrm{forum}... \\ $$$$\mathrm{we}\:\mathrm{cannot}\:\mathrm{solve}\:\mathrm{the}\:\mathrm{unanswered}\:\mathrm{questions} \\ $$$$\mathrm{much}\:\mathrm{greater}\:\mathrm{mathematicians}\:\mathrm{haven}'\mathrm{t}\:\mathrm{been} \\ $$$$\mathrm{able}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{yet} \\ $$$$\mathrm{thus}\:\mathrm{it}\:\mathrm{makes}\:\mathrm{absolutely}\:\mathrm{no}\:\mathrm{sense}\:\mathrm{to}\:\mathrm{post} \\ $$$$\mathrm{them}\:\mathrm{here} \\ $$$$\mathrm{also}\:\mathrm{it}\:\mathrm{makes}\:\mathrm{no}\:\mathrm{sense}\:\mathrm{to}\:\mathrm{post}\:\mathrm{problems}\:\mathrm{from} \\ $$$$\mathrm{books}\:\mathrm{or}\:\mathrm{from}\:\mathrm{the}\:\mathrm{www}\:\mathrm{if}\:\mathrm{you}\:\mathrm{don}'\mathrm{t}\:\mathrm{have}\:\mathrm{the} \\ $$$$\mathrm{foggiest}\:\mathrm{idea}\:\mathrm{of}\:\mathrm{their}\:\mathrm{meaning}\:\mathrm{or}\:\mathrm{how}\:\mathrm{to}\:\mathrm{solve} \\ $$$$\mathrm{them}.\:\mathrm{it}\:\mathrm{might}\:\mathrm{be}\:\mathrm{fun}\:\mathrm{for}\:\mathrm{us}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{some}\:\mathrm{of} \\ $$$$\mathrm{them}\:\mathrm{but}\:\mathrm{mostly}\:\mathrm{it}'\mathrm{s}\:\mathrm{like}\:\mathrm{casting}\:\mathrm{pearls}... \\ $$

Question Number 77204    Answers: 0   Comments: 2

is there a general solution for the equation x[x[x[x...]]]_(n times x) =m with x>0, m>0.

$${is}\:{there}\:{a}\:{general}\:{solution}\:{for} \\ $$$${the}\:{equation} \\ $$$$\underset{{n}\:{times}\:{x}} {\boldsymbol{{x}}\left[\boldsymbol{{x}}\left[\boldsymbol{{x}}\left[\boldsymbol{{x}}...\right]\right]\right]}=\boldsymbol{{m}} \\ $$$${with}\:{x}>\mathrm{0},\:{m}>\mathrm{0}. \\ $$

Question Number 77199    Answers: 0   Comments: 4

Question Number 77234    Answers: 1   Comments: 0

Question Number 77186    Answers: 1   Comments: 0

given { ((3^y −1= (6/2^x ))),(((3)^(y/x) = 2 )) :} find (1/x)+(1/y).

$$\mathrm{given}\: \\ $$$$\begin{cases}{\mathrm{3}^{\mathrm{y}} −\mathrm{1}=\:\frac{\mathrm{6}}{\mathrm{2}^{\mathrm{x}} }}\\{\left(\mathrm{3}\right)^{\frac{\mathrm{y}}{\mathrm{x}}} \:=\:\mathrm{2}\:}\end{cases}\:\:\mathrm{find}\:\frac{\mathrm{1}}{\mathrm{x}}+\frac{\mathrm{1}}{\mathrm{y}}. \\ $$

Question Number 77183    Answers: 1   Comments: 0

what is x satisfy inequality 3^x^2 × 5^(x−1) ≥ 3

$$\mathrm{what}\:\mathrm{is}\:\mathrm{x}\: \\ $$$$\mathrm{satisfy}\:\mathrm{inequality}\: \\ $$$$\mathrm{3}^{\mathrm{x}^{\mathrm{2}} } ×\:\mathrm{5}^{\mathrm{x}−\mathrm{1}} \:\geqslant\:\mathrm{3} \\ $$

Question Number 77182    Answers: 1   Comments: 1

evaluate lim_(x→0) ((∫_a ^x (((cos t)/t))dt)/x) .

$$ \\ $$$$ \\ $$$$\mathrm{evaluate}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\underset{\mathrm{a}} {\overset{\mathrm{x}} {\int}}\left(\frac{\mathrm{cos}\:\mathrm{t}}{\mathrm{t}}\right)\mathrm{dt}}{\mathrm{x}}\:. \\ $$

Question Number 77180    Answers: 1   Comments: 0

given a quadratic equation 3x^2 −x+(t^2 −4t+3)=0 has roots sin α and cos α. find the value (√(t^2 −4t+5)) .

$$ \\ $$$$ \\ $$$$\mathrm{given}\:\mathrm{a}\:\mathrm{quadratic}\:\mathrm{equation}\: \\ $$$$\mathrm{3x}^{\mathrm{2}} −\mathrm{x}+\left(\mathrm{t}^{\mathrm{2}} −\mathrm{4t}+\mathrm{3}\right)=\mathrm{0}\:\mathrm{has} \\ $$$$\mathrm{roots}\:\mathrm{sin}\:\alpha\:\mathrm{and}\:\mathrm{cos}\:\alpha.\:\mathrm{find}\:\mathrm{the}\: \\ $$$$\mathrm{value}\:\sqrt{\mathrm{t}^{\mathrm{2}} −\mathrm{4t}+\mathrm{5}}\:. \\ $$

Question Number 77178    Answers: 1   Comments: 0

given cos^(−1) (x)+cos^(−1) (y)+cos^(−1) (z)=π and x+y+z=(3/2) prove that x = y = z .

$$ \\ $$$${given}\:\mathrm{cos}^{−\mathrm{1}} \left({x}\right)+\mathrm{cos}^{−\mathrm{1}} \left({y}\right)+\mathrm{cos}^{−\mathrm{1}} \left({z}\right)=\pi \\ $$$${and}\:{x}+{y}+{z}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$${prove}\:{that}\:{x}\:=\:{y}\:=\:{z}\:. \\ $$

Question Number 77164    Answers: 1   Comments: 2

Question Number 77160    Answers: 1   Comments: 1

Question Number 77158    Answers: 0   Comments: 4

∫_(−2) ^( 2) (x^3 cos(x/2) + (1/2))(√(4 − x^2 )) dx

$$\int_{−\mathrm{2}} ^{\:\mathrm{2}} \:\left(\mathrm{x}^{\mathrm{3}} \:\mathrm{cos}\frac{\mathrm{x}}{\mathrm{2}}\:+\:\frac{\mathrm{1}}{\mathrm{2}}\right)\sqrt{\mathrm{4}\:−\:\mathrm{x}^{\mathrm{2}} }\:\:\mathrm{dx} \\ $$

Question Number 77154    Answers: 0   Comments: 6

Question Number 77149    Answers: 0   Comments: 2

Any reference to a book or video that coould help me solve Differential equations? please help

$$\mathrm{Any}\:\mathrm{reference}\:\mathrm{to}\:\mathrm{a}\:\mathrm{book}\:\mathrm{or}\:\mathrm{video} \\ $$$$\mathrm{that}\:\mathrm{coould}\:\mathrm{help}\:\mathrm{me}\:\mathrm{solve}\:\mathrm{Differential}\:\mathrm{equations}?\: \\ $$$$\mathrm{please}\:\mathrm{help} \\ $$

Question Number 77147    Answers: 0   Comments: 1

Σ_(r=1) ^∞ (1/r^k ) is divergent for: A. k ≤ 1 B. k > 2 C. k ≤ 2 D. 0 ≤ k < 2

$$\:\underset{{r}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{r}^{{k}} }\:{is}\:{divergent}\:{for}: \\ $$$${A}.\:{k}\:\leqslant\:\mathrm{1} \\ $$$${B}.\:{k}\:>\:\mathrm{2} \\ $$$${C}.\:{k}\:\leqslant\:\mathrm{2} \\ $$$${D}.\:\mathrm{0}\:\leqslant\:{k}\:<\:\mathrm{2} \\ $$

Question Number 77144    Answers: 1   Comments: 2

Question Number 77143    Answers: 1   Comments: 2

Question Number 77132    Answers: 0   Comments: 1

Question Number 77129    Answers: 1   Comments: 0

solve in R ∣tan2x∣−(√3)≥0

$$\mathrm{solve}\:\mathrm{in}\:\mathrm{R} \\ $$$$\mid\mathrm{tan2}{x}\mid−\sqrt{\mathrm{3}}\geqslant\mathrm{0} \\ $$

Question Number 77128    Answers: 2   Comments: 0

Find the value of constant “a” such that axe^(−x ) is a solution of Differential equation (d^2 y/dx^2 )+3(dy/dx)+2y=2e^(−x) solve D.E for which y=1 and (dy/dx)=3 when x=0

$${Find}\:{the}\:{value}\:{of}\:{constant} \\ $$$$``{a}''\:{such}\:{that}\:{axe}^{−{x}\:} {is} \\ $$$${a}\:{solution}\:{of}\:{Differential} \\ $$$${equation} \\ $$$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }+\mathrm{3}\frac{{dy}}{{dx}}+\mathrm{2}{y}=\mathrm{2}{e}^{−{x}} \\ $$$${solve}\:{D}.{E}\:{for}\:\:{which} \\ $$$${y}=\mathrm{1}\:{and}\:\frac{{dy}}{{dx}}=\mathrm{3}\:{when} \\ $$$${x}=\mathrm{0} \\ $$

Question Number 77127    Answers: 2   Comments: 0

Prove that line lx+my+n=0 is tangent to the ellipse (x^2 /a^2 )+(y^2 /b^(2 ) )=1 if a^2 l^2 +b^2 m^2 =n^2

$${Prove}\:{that}\:{line}\:{lx}+{my}+{n}=\mathrm{0} \\ $$$${is}\:{tangent}\:{to}\:{the}\:{ellipse} \\ $$$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}\:} }=\mathrm{1}\:{if}\:{a}^{\mathrm{2}} {l}^{\mathrm{2}} +{b}^{\mathrm{2}} {m}^{\mathrm{2}} ={n}^{\mathrm{2}} \\ $$

Question Number 77126    Answers: 1   Comments: 0

1)Express (x/((1−x)^4 )) in partial fraction 2) Solve xdy+ydy−(((xdx−ydy)/(x^2 +y^2 )))=0

$$\left.\mathrm{1}\right){Express}\:\frac{{x}}{\left(\mathrm{1}−{x}\right)^{\mathrm{4}} }\:\:\:{in} \\ $$$${partial}\:{fraction} \\ $$$$\left.\mathrm{2}\right)\:{Solve} \\ $$$${xdy}+{ydy}−\left(\frac{{xdx}−{ydy}}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\right)=\mathrm{0} \\ $$$$ \\ $$

Question Number 77123    Answers: 1   Comments: 0

ABC is a non−right triangle. 1) Demonstrate that tan(A^ +B^ )=−tanC^ . 1) By using tan(A^ +B^ )=((tanA^ +tanB^ )/(1−tanA^ tanB^ )) prove that tanA^ +tanB^ +tanC^ =tanAtanBtanC please i need your help

$$\mathrm{ABC}\:\mathrm{is}\:\mathrm{a}\:\mathrm{non}−\mathrm{right}\:\mathrm{triangle}. \\ $$$$\left.\mathrm{1}\right)\:\mathrm{Demonstrate}\:\mathrm{that} \\ $$$$\mathrm{tan}\left(\hat {\mathrm{A}}+\hat {\mathrm{B}}\right)=−\mathrm{tan}\hat {\mathrm{C}}. \\ $$$$\left.\mathrm{1}\right)\:\mathrm{By}\:\mathrm{using}\:\mathrm{tan}\left(\hat {\mathrm{A}}+\hat {\mathrm{B}}\right)=\frac{\mathrm{tan}\hat {\mathrm{A}}+\mathrm{tan}\hat {\mathrm{B}}}{\mathrm{1}−\mathrm{tan}\hat {\mathrm{A}tan}\hat {\mathrm{B}}} \\ $$$$\mathrm{prove}\:\mathrm{that}\:\mathrm{tan}\hat {\mathrm{A}}+\mathrm{tan}\hat {\mathrm{B}}+\mathrm{tan}\hat {\mathrm{C}}=\mathrm{tanAtanBtanC} \\ $$$$\mathrm{please}\:\mathrm{i}\:\mathrm{need}\:\mathrm{your}\:\mathrm{help} \\ $$

Question Number 77119    Answers: 2   Comments: 0

suppose the equations x^2 +px+4=0 and x^2 +qx+3=0 have a common root, write this root in terms of the other root.

$${suppose}\:{the}\:{equations}\:{x}^{\mathrm{2}} +{px}+\mathrm{4}=\mathrm{0} \\ $$$${and}\:{x}^{\mathrm{2}} +{qx}+\mathrm{3}=\mathrm{0}\:\:{have}\:{a}\:{common}\:{root}, \\ $$$${write}\:{this}\:{root}\:{in}\:{terms}\:{of}\:{the}\:{other}\:{root}. \\ $$

Question Number 77117    Answers: 0   Comments: 0

Interview indicates that all the 4 maths students,5 physics and 7 chemistry students who applied for a scholarship in their respective disciplines qualified for an award. In how many ways the aeard can be made if; (i)only one scholarship is available in each of the disciplines (ii)only two scholarships are availablr in each of the disciplines.

$${Interview}\:{indicates}\:{that}\:{all}\:{the}\:\mathrm{4}\:{maths} \\ $$$${students},\mathrm{5}\:{physics}\:{and}\:\mathrm{7}\:{chemistry} \\ $$$${students}\:{who}\:{applied}\:{for}\:{a}\:{scholarship} \\ $$$${in}\:{their}\:{respective}\:{disciplines}\:{qualified} \\ $$$${for}\:{an}\:{award}.\:{In}\:{how}\:{many}\:{ways}\:{the}\:{aeard} \\ $$$${can}\:{be}\:{made}\:{if}; \\ $$$$\left({i}\right){only}\:{one}\:{scholarship}\:{is}\:{available}\:{in} \\ $$$${each}\:{of}\:{the}\:{disciplines} \\ $$$$\left({ii}\right){only}\:{two}\:{scholarships}\:{are}\:{availablr} \\ $$$${in}\:{each}\:{of}\:{the}\:{disciplines}. \\ $$

  Pg 1339      Pg 1340      Pg 1341      Pg 1342      Pg 1343      Pg 1344      Pg 1345      Pg 1346      Pg 1347      Pg 1348   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com