Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1343

Question Number 76346    Answers: 1   Comments: 5

Question Number 76341    Answers: 0   Comments: 1

Question Number 76340    Answers: 3   Comments: 1

Question Number 76328    Answers: 0   Comments: 2

Question Number 76326    Answers: 2   Comments: 0

Question Number 76323    Answers: 0   Comments: 2

Question Number 76317    Answers: 0   Comments: 3

Question Number 76307    Answers: 1   Comments: 0

Question Number 76306    Answers: 1   Comments: 0

z = a + bi Z = ((−7 + z)/(−3 + iz)) What is the equation of all the points M of coordonates (a,b) such as Z is real ?

$${z}\:=\:{a}\:+\:{bi} \\ $$$${Z}\:=\:\frac{−\mathrm{7}\:+\:{z}}{−\mathrm{3}\:+\:{iz}} \\ $$$$ \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{all}\:\mathrm{the}\:\mathrm{points}\:\mathrm{M} \\ $$$$\mathrm{of}\:\mathrm{coordonates}\:\left({a},{b}\right)\:\mathrm{such}\:\mathrm{as}\:{Z}\:\mathrm{is}\:\mathrm{real}\:? \\ $$

Question Number 76303    Answers: 1   Comments: 0

In the symmetric group (S_n , o), let H denotes the set of permutations leaving the integer n fixed: H = {f∈S_n ∣ f(n) = n} Show that the pair (H, o) is subgroup of (S_n ,o). ′note: the operation is composition′

$${In}\:{the}\:{symmetric}\:{group}\:\left({S}_{{n}} \:,\:{o}\right),\:{let} \\ $$$${H}\:{denotes}\:{the}\:{set}\:{of}\:{permutations}\: \\ $$$${leaving}\:{the}\:{integer}\:{n}\:{fixed}: \\ $$$$\:\:\:{H}\:=\:\left\{{f}\in{S}_{{n}} \:\mid\:{f}\left({n}\right)\:=\:{n}\right\} \\ $$$${Show}\:{that}\:{the}\:{pair}\:\left({H},\:{o}\right)\:{is}\:{subgroup} \\ $$$${of}\:\left({S}_{{n}} ,{o}\right). \\ $$$$'{note}:\:{the}\:{operation}\:{is}\:{composition}' \\ $$

Question Number 76302    Answers: 1   Comments: 0

given vektor a=(3,x,−2) b=(−6,−2,y) . what the value x and y if a and b are parallel?

$${given}\:{vektor}\:{a}=\left(\mathrm{3},{x},−\mathrm{2}\right) \\ $$$${b}=\left(−\mathrm{6},−\mathrm{2},{y}\right)\:.\:{what}\:{the}\:{value}\:{x}\: \\ $$$${and}\:{y}\:{if}\:{a}\:{and}\:{b}\:{are}\:{parallel}? \\ $$

Question Number 76298    Answers: 1   Comments: 4

∫(√( tanx+cotxdx))

$$\int\sqrt{\:\mathrm{tanx}+\mathrm{cotxdx}} \\ $$

Question Number 76290    Answers: 1   Comments: 1

how to prove x^y +y^x ≥1 , x,y ∈R x,y > 0

$$\mathrm{how}\:\mathrm{to}\:\mathrm{prove}\:\mathrm{x}^{\mathrm{y}} \:+\mathrm{y}^{\mathrm{x}} \:\geqslant\mathrm{1}\:,\:\mathrm{x},\mathrm{y}\:\in\mathbb{R} \\ $$$$\mathrm{x},\mathrm{y}\:>\:\mathrm{0} \\ $$

Question Number 76288    Answers: 0   Comments: 2

what is f(x) if f(3)=10, f(2)=14 f(1)=20 ?

$$\mathrm{what}\:\mathrm{is}\:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{if}\:\mathrm{f}\left(\mathrm{3}\right)=\mathrm{10},\:\mathrm{f}\left(\mathrm{2}\right)=\mathrm{14} \\ $$$$\mathrm{f}\left(\mathrm{1}\right)=\mathrm{20}\:? \\ $$

Question Number 76277    Answers: 1   Comments: 0

Question Number 76272    Answers: 1   Comments: 2

Find the area S of a triangle ABC as a function of the heights h_a , h_b and h_c .

$${Find}\:{the}\:{area}\:{S}\:{of}\:{a}\:{triangle}\:{ABC} \\ $$$${as}\:{a}\:{function}\:{of}\:{the}\:{heights} \\ $$$${h}_{{a}} ,\:{h}_{{b}} \:{and}\:{h}_{{c}} . \\ $$

Question Number 76270    Answers: 0   Comments: 5

Question Number 76265    Answers: 1   Comments: 0

Question Number 76252    Answers: 1   Comments: 1

A triangle has an area of 20 square units and two vertices are (3,4) and (2,7). What is the position of the third vertex?

$${A}\:{triangle}\:{has}\:{an}\:{area}\:{of}\:\mathrm{20}\:{square} \\ $$$${units}\:{and}\:{two}\:{vertices}\:{are}\:\left(\mathrm{3},\mathrm{4}\right)\:{and}\:\left(\mathrm{2},\mathrm{7}\right). \\ $$$${What}\:{is}\:{the}\:{position}\:{of}\:{the}\:{third}\:{vertex}? \\ $$

Question Number 76250    Answers: 0   Comments: 1

Question Number 76248    Answers: 0   Comments: 3

x^(lim) →0^( (((sin3x)/(2x)))^(2/(5x+1)) ) = ?

$$\overset{{lim}} {{x}}\rightarrow\overset{\:\:\:\:\left(\frac{{sin}\mathrm{3}{x}}{\mathrm{2}{x}}\right)^{\frac{\mathrm{2}}{\mathrm{5}{x}+\mathrm{1}}} } {\mathrm{0}}=\:?\:\: \\ $$

Question Number 76246    Answers: 2   Comments: 0

how to solving x^3 +y^(3 ) =4 and x×y =1?

$$\mathrm{how}\:\mathrm{to}\:\mathrm{solving}\:\mathrm{x}^{\mathrm{3}} \:+\mathrm{y}^{\mathrm{3}\:} \:=\mathrm{4}\:\mathrm{and}\: \\ $$$$\mathrm{x}×\mathrm{y}\:=\mathrm{1}? \\ $$

Question Number 76229    Answers: 1   Comments: 0

Let P(x) be polynomial in x with integral coefficients. If n is a solution of P(x)≡0(mod n) , and a≡b(mod n), prove that b is also a solution.

$${Let}\:{P}\left({x}\right)\:{be}\:{polynomial}\:{in}\:{x}\:{with}\:{integral} \\ $$$${coefficients}.\:{If}\:{n}\:{is}\:{a}\:{solution}\:{of}\: \\ $$$${P}\left({x}\right)\equiv\mathrm{0}\left({mod}\:{n}\right)\:,\:{and}\:{a}\equiv{b}\left({mod}\:{n}\right), \\ $$$${prove}\:{that}\:{b}\:{is}\:{also}\:{a}\:{solution}. \\ $$

Question Number 76228    Answers: 1   Comments: 2

prove that 6^n ≡ 6 (mod 10), for any n ∈ Z^( +)

$${prove}\:{that}\:\mathrm{6}^{{n}} \:\equiv\:\mathrm{6}\:\left({mod}\:\mathrm{10}\right),\:{for}\:{any}\:{n}\:\in\:{Z}^{\:+} \\ $$

Question Number 76220    Answers: 1   Comments: 1

Question Number 76214    Answers: 3   Comments: 0

x^2 +2x−9+(9/((x+1)^2 ))=0 please

$$\mathrm{x}^{\mathrm{2}} +\mathrm{2x}−\mathrm{9}+\frac{\mathrm{9}}{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }=\mathrm{0} \\ $$$$\mathrm{please} \\ $$

  Pg 1338      Pg 1339      Pg 1340      Pg 1341      Pg 1342      Pg 1343      Pg 1344      Pg 1345      Pg 1346      Pg 1347   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com