Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1343
Question Number 78897 Answers: 1 Comments: 11
Question Number 78894 Answers: 0 Comments: 1
$${if}\:{U}={x}^{\mathrm{3}} +{y}^{\mathrm{3}} +\mathrm{6}\:{sinz}+\mathrm{11}\:{then}\:{u}_{{z}} \left(\mathrm{1},\mathrm{0},{pi}\right)\:{is} \\ $$
Question Number 78890 Answers: 0 Comments: 2
$${the}\:{local}\:{maximum}\:{value}\:{of}\:{f}\left({x}\right)={x}^{\mathrm{4}} +\mathrm{32}{x} \\ $$
Question Number 78889 Answers: 1 Comments: 0
$${the}\:{angle}\:{between}\:{the}\:{planes}\:{r}^{\rightarrow} .\left(\mathrm{2}{i}^{\rightarrow} +\mathrm{2}{j}^{\rightarrow} +\mathrm{2}{k}^{\rightarrow} \right)=\mathrm{4}\:{and}\:\mathrm{4}{x}−\mathrm{2}{y}+\mathrm{2}{z}=\mathrm{15}\:{is} \\ $$
Question Number 78888 Answers: 1 Comments: 1
$$\mathrm{The}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\left({x}−{a}\right)\left({x}−{b}\right)={abx}^{\mathrm{2}} \:\mathrm{are}\:\mathrm{always} \\ $$
Question Number 78887 Answers: 0 Comments: 2
$${if}\:{teta}=\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{7}\right)\:{then}\:\mathrm{sec}\:{teta}\:{is} \\ $$
Question Number 78885 Answers: 1 Comments: 0
$${The}\:{number}\:{of}\:{real}\:{numbers}\:{in}\:\left[\mathrm{0},\mathrm{2pi}\right]\:\mathrm{satisfying}\:\mathrm{sin}^{−\mathrm{1}} \mathrm{x}−\mathrm{2sin}^{\mathrm{2}} {x}+\mathrm{1}=\mathrm{0}\:{is} \\ $$
Question Number 78878 Answers: 1 Comments: 0
$${x}^{\mathrm{3}} \:{y}'''\:−\:\mathrm{3}{x}^{\mathrm{2}} {y}''+\mathrm{6}{xy}'\:−\mathrm{6}{y}={x}^{\mathrm{4}} \:{ln}\left({x}\right),{x}>\mathrm{0} \\ $$
Question Number 78877 Answers: 1 Comments: 6
$${if}\:\:\:\frac{{sin}\left({A}\right)}{{sin}\left({B}\right)}=\frac{{sin}\left({D}\right)}{{sin}\left({C}\right)} \\ $$$${and}\:{A}+{B}={C}+{D} \\ $$$$ \\ $$$${then}\:{prove}\:{that}\:\: \\ $$$${A}+{B}=\mathrm{180} \\ $$$${C}+{D}=\mathrm{180} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$
Question Number 78880 Answers: 1 Comments: 0
$${x}\:+\:\frac{\mathrm{1}}{{x}}\:\:=\:\:\mathrm{3}\:\:\:,\:\:\:\:{x}\:\in\:\mathbb{R} \\ $$$$\left({x}^{\mathrm{2020}} \:+\:\frac{\mathrm{1}}{{x}^{\mathrm{2020}} }\right)\:\:{mod}\:\left(\mathrm{10}\right)\:\:=\:\:{y} \\ $$$${y}^{\mathrm{2}} \:−\:\mathrm{1}\:\:=\:\:? \\ $$
Question Number 78865 Answers: 2 Comments: 5
$$ \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt[{\mathrm{3}}]{\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{3}} }\:}\:−\sqrt[{\mathrm{3}}]{\mathrm{2}}}{\mathrm{2x}^{\mathrm{3}} } \\ $$
Question Number 78857 Answers: 1 Comments: 5
$${with}\:{a},{b}\in{R}\:{prove}\:{that} \\ $$$$\sqrt[{\mathrm{3}}]{{a}+\sqrt{\mathrm{3}}{bi}}+\sqrt[{\mathrm{3}}]{{a}−\sqrt{\mathrm{3}}{bi}} \\ $$$${has}\:{always}\:{real}\:{value}\:{and}\:{find}\:{this} \\ $$$${value}\:\left({or}\:{a}\:{way}\:{how}\:{to}\:{find}\right). \\ $$$${examples}: \\ $$$${a}=\mathrm{15},\:{b}=\frac{\mathrm{28}}{\mathrm{9}}\:\:\Rightarrow\:{result}=\mathrm{5} \\ $$$${a}=\mathrm{6},\:{b}=\frac{\mathrm{35}}{\mathrm{9}}\:\:\Rightarrow\:{result}=\mathrm{4} \\ $$$${a}=−\mathrm{24},\:{b}=\frac{\mathrm{80}}{\mathrm{9}}\:\:\Rightarrow\:{result}=\mathrm{4} \\ $$
Question Number 78853 Answers: 4 Comments: 0
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{sin}\left(\mathrm{x}\right)+\mathrm{sin}\left(\mathrm{y}\right)}{\mathrm{x}+\mathrm{y}}\mathrm{dxdy}? \\ $$
Question Number 78851 Answers: 0 Comments: 1
Question Number 78829 Answers: 0 Comments: 8
$$\mathrm{given}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{f}\left(\mathrm{x}+\mathrm{4}\right)\:\forall\mathrm{x}\in\mathbb{R} \\ $$$$\mathrm{and}\:\underset{\mathrm{5}} {\overset{\mathrm{7}} {\int}}\mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}=\mathrm{p}\:.\:\mathrm{what}\:\mathrm{is}\: \\ $$$$\underset{\mathrm{2}} {\overset{\mathrm{10}} {\int}}\mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}? \\ $$$$ \\ $$
Question Number 78828 Answers: 0 Comments: 3
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\mathrm{2}+\mathrm{sin}\:{x}\right).{lnx}\:=\:? \\ $$
Question Number 78827 Answers: 0 Comments: 2
$$\mathrm{what}\:\mathrm{is}\:\mathrm{inverse}\:\:\mathrm{function} \\ $$$$\mathrm{of}\:\mathrm{y}=\:\frac{\mathrm{5x}^{\mathrm{5}} −\mathrm{3x}^{\mathrm{3}} +\mathrm{x}}{\mathrm{4x}^{\mathrm{4}} −\mathrm{2x}^{\mathrm{2}} +\mathrm{1}} \\ $$
Question Number 78815 Answers: 1 Comments: 0
$$\mathrm{show}\:\mathrm{that} \\ $$$$\mathrm{sin}\frac{\mathrm{2}\pi}{\mathrm{5}}=\mathrm{sin}\frac{\mathrm{3}\pi}{\mathrm{5}} \\ $$
Question Number 78814 Answers: 1 Comments: 1
Question Number 78820 Answers: 1 Comments: 0
$$\mathrm{please}\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{fomula}\:\mathrm{to}\: \\ $$$$\mathrm{determinate}\:\mathrm{the}\:\mathrm{equations}\:\mathrm{of}\: \\ $$$$\mathrm{bissectors}\:\mathrm{in}\:\mathrm{triangle}? \\ $$
Question Number 78800 Answers: 1 Comments: 3
$${Simplify}: \\ $$$$\underset{\mathrm{3}} {\:}\sqrt{\mathrm{3}+\frac{\mathrm{10}}{\mathrm{3}}\sqrt{\frac{\mathrm{1}}{\mathrm{3}}}{i}}+\underset{\mathrm{3}} {\:}\sqrt{\mathrm{3}−\frac{\mathrm{10}}{\mathrm{3}}\sqrt{\frac{\mathrm{1}}{\mathrm{3}}}{i}} \\ $$
Question Number 78799 Answers: 1 Comments: 3
Question Number 78797 Answers: 1 Comments: 0
$$\mathrm{Show}\:\mathrm{that}:\:\:\:\:\int_{\:\mathrm{0}} ^{\:\infty} \:\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{e}^{\mathrm{x}} \:−\:\mathrm{1}}\:\mathrm{dx}\:\:\:\:=\:\:\:\frac{\pi^{\mathrm{4}} }{\mathrm{15}} \\ $$
Question Number 78794 Answers: 1 Comments: 0
$${f}\left({x}\:+\:\frac{\mathrm{1}}{{x}}\right)\:\:=\:\:\frac{{x}^{\mathrm{6}} \:+\:\mathrm{1}}{\mathrm{27}} \\ $$$${f}\left({x}\right)\:\:=\:\:... \\ $$
Question Number 78791 Answers: 1 Comments: 0
$$ \\ $$$$ \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\sqrt{\mathrm{2}+\mathrm{3x}−\mathrm{x}^{\mathrm{2}} }\:−\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{2x}+\mathrm{2}}\:? \\ $$
Question Number 78785 Answers: 1 Comments: 0
$$ \\ $$$$ \\ $$$$\left(\mathrm{1}+\mathrm{sin}\:\frac{\pi}{\mathrm{7}}\right)^{\mathrm{3}−\mathrm{cos}\:\mathrm{2x}} =\:\left(\mathrm{sin}\:\frac{\pi}{\mathrm{14}}+\mathrm{cos}\:\frac{\pi}{\mathrm{14}}\right)^{\mathrm{10}\:\mathrm{sin}\:\mathrm{x}} \\ $$$$\mathrm{find}\:\mathrm{solution} \\ $$
Pg 1338 Pg 1339 Pg 1340 Pg 1341 Pg 1342 Pg 1343 Pg 1344 Pg 1345 Pg 1346 Pg 1347
Terms of Service
Privacy Policy
Contact: info@tinkutara.com