Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1341
Question Number 78207 Answers: 1 Comments: 6
$${what}\:{minimum}\: \\ $$$${value}\:{of}\:{f}\left({x}\right)=\:\mathrm{9tan}\:^{\mathrm{2}} \left({x}\right)+\mathrm{4cot}\:^{\mathrm{2}} \left({x}\right) \\ $$
Question Number 78198 Answers: 1 Comments: 4
Question Number 78177 Answers: 1 Comments: 10
$${what}\:{equation}\:{of}\:{ellips} \\ $$$${with}\:{F}_{\mathrm{1}} \left(\mathrm{1},\mathrm{2}\right)\:{F}_{\mathrm{2}} \left(\mathrm{3},\mathrm{4}\right)\:{and}\:{a}\:=\:\sqrt{\mathrm{3}} \\ $$
Question Number 78168 Answers: 0 Comments: 6
$$\mathrm{Solve}\:\mathrm{for}\:\:\mathrm{x},\:\mathrm{y},\:\mathrm{z}\:\:\mathrm{if}:\:\:\mathrm{x}^{\mathrm{3}} \:+\:\mathrm{y}^{\mathrm{3}} \:+\:\mathrm{z}^{\mathrm{3}} \:\:=\:\:\mathrm{42} \\ $$
Question Number 78163 Answers: 0 Comments: 2
$$\int\:\sqrt{\mathrm{1}\:+\:\mathrm{3}\:\mathrm{sin}\left(\theta\right)\:+\:\mathrm{sin}^{\mathrm{2}} \left(\theta\right)}\:\:\mathrm{d}\theta \\ $$
Question Number 78162 Answers: 0 Comments: 4
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{nth}\:\mathrm{term} \\ $$$$\:\:\:\underset{\mathrm{k}\:=\:\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\:\frac{\mathrm{1}}{\mathrm{k}^{\mathrm{2}} } \\ $$
Question Number 78161 Answers: 1 Comments: 0
Question Number 78160 Answers: 0 Comments: 1
$$\mathrm{find}\:\mathrm{the}\:\mathrm{term}\:\mathrm{independent}\:\mathrm{of}\:\mathrm{x}\:\mathrm{in} \\ $$$$\:\:\left[\:\:\frac{\mathrm{x}−\mathrm{1}}{\mathrm{x}}\right]^{\mathrm{9}} \\ $$
Question Number 78156 Answers: 0 Comments: 1
$$\mathrm{Given}\:\mathrm{that}\:{u}_{{n}\:+\:\mathrm{1}} =\:\frac{{a}_{{n}} }{\mathrm{2}}\:+\:\mathrm{5}\:\:\: \\ $$$${evalatuate}\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{a}_{{n}} \\ $$$${deduce}\:{if}\:{a}_{{n}\:} \:{is}\:{convergent}\:{or}\:{divergent}. \\ $$
Question Number 78153 Answers: 1 Comments: 1
Question Number 78147 Answers: 0 Comments: 0
Question Number 78136 Answers: 1 Comments: 5
$${give}\:{the}\:{equation}\:{of}\:{tangente} \\ $$$${at}\:\:{p}\left({x}_{\mathrm{0}} ,{f}\left({x}_{\mathrm{0}} \right)\right) \\ $$$$\left.\mathrm{1}\right){f}\left({x}\right)={e}^{−{x}^{\mathrm{2}} } {ln}\left(\mathrm{1}−\mathrm{2}{x}\right)\:\:\:{x}_{\mathrm{0}} =−\mathrm{1} \\ $$$$\left.\mathrm{2}\right){f}\left({x}\right)=\left({x}^{\mathrm{2}} −\mathrm{3}\right){arctan}\left({x}^{\mathrm{2}} \right) \\ $$$${x}_{\mathrm{0}} \:\:=\mathrm{1} \\ $$$$\left.\mathrm{3}\right)\:{f}\left({x}\right)\:=\frac{{e}^{−{x}} {sin}\left(\pi{x}\right)}{{x}^{\mathrm{2}} \:+\mathrm{3}}\:\:\:{x}_{\mathrm{0}} =\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\left.\mathrm{4}\right)\:{f}\left({x}\right)={e}^{−{x}} \sqrt{{e}^{{x}^{\mathrm{2}} } −\mathrm{1}} \\ $$$${and}\:{x}_{\mathrm{0}} =\:\mathrm{2} \\ $$$$ \\ $$
Question Number 78135 Answers: 0 Comments: 0
$${explicit}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left({xt}\right)}{{t}^{\mathrm{2}} +{x}^{\mathrm{2}} }{dt} \\ $$$${with}\:{x}>\mathrm{0} \\ $$
Question Number 78134 Answers: 0 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\:\int_{−\infty} ^{+\infty} \:\frac{{arctan}\left(\mathrm{3}{x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} +\mathrm{4}}{dx} \\ $$
Question Number 78122 Answers: 1 Comments: 3
$$\underset{{x}\rightarrow\mathrm{1}^{−} } {\mathrm{lim}}{lnx}\centerdot{ln}\left(\mathrm{1}−{x}\right)=? \\ $$
Question Number 78119 Answers: 1 Comments: 6
$${find}\:{the}\:{center}\:{point}\:{ellips} \\ $$$$\mathrm{5}{x}^{\mathrm{2}} +\mathrm{8}{y}^{\mathrm{2}} −\mathrm{24}{x}−\mathrm{24}{y}+\mathrm{4}{xy}=\mathrm{0} \\ $$
Question Number 78254 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{xln}\left(\mathrm{ln}\left(\frac{\mathrm{1}}{\mathrm{x}}\right)\right)}{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }\mathrm{dx} \\ $$$$\mathrm{i}\:\mathrm{poste}\:\mathrm{solution}\:\mathrm{later}! \\ $$
Question Number 78108 Answers: 1 Comments: 1
Question Number 78106 Answers: 0 Comments: 1
Question Number 78105 Answers: 1 Comments: 0
Question Number 78102 Answers: 1 Comments: 1
Question Number 78099 Answers: 0 Comments: 0
$${anyone}\:{have}\:{problems}\:{about} \\ $$$${limits}\:{and}\:{derivatives}?\:{i}\:{need}\:{it} \\ $$
Question Number 78083 Answers: 1 Comments: 5
Question Number 78075 Answers: 0 Comments: 5
$${expressing}\:\:{P}\left({x}\right)\:=\:\frac{{x}^{\mathrm{2}} \:+\:{x}}{\left({x}−\mathrm{3}\right)\left({x}^{\mathrm{2}} −\mathrm{2}\right)}\:{in}\:{partial}\:{fractions}\:{gives} \\ $$$${A}.\:\:\frac{{A}}{\left({x}−\mathrm{3}\right)}\:+\:\frac{{Bx}\:+\:{C}}{\left({x}^{\mathrm{2}} −\mathrm{2}\right)}\: \\ $$$${B}.\:\:\frac{{A}}{{x}−\mathrm{3}}\:+\:\frac{{B}}{{x}−\mathrm{2}}\:+\:\frac{{C}}{{x}+\mathrm{2}} \\ $$$${C}.\:\frac{{A}}{{x}−\mathrm{3}}\:+\:\frac{{B}}{{x}−\sqrt{\mathrm{2}}}\:+\:\frac{{C}}{{x}\:+\:\sqrt{\mathrm{2}}} \\ $$$${D}.\:\frac{{Ax}\:+\:{B}}{{x}−\mathrm{3}}\:+\:\frac{{C}}{{x}^{\mathrm{2}} −\mathrm{2}} \\ $$
Question Number 78074 Answers: 2 Comments: 0
$${evaluate}\:\int_{\mathrm{1}} ^{\mathrm{4}} \mathrm{sinh}\:^{−\mathrm{1}} {x}\:{dx}\:\:{and}\:\underset{\mathrm{1}} {\overset{\frac{\mathrm{1}}{\mathrm{2}}} {\int}}\mathrm{tanh}\:^{−\mathrm{1}} {x}\:{dx} \\ $$
Question Number 78073 Answers: 0 Comments: 1
$${anyone}\:{have}\:{Lambert}\:{W}\:{function} \\ $$$${formula}.\:{please}\:{post}\:{in}\:{forum} \\ $$
Pg 1336 Pg 1337 Pg 1338 Pg 1339 Pg 1340 Pg 1341 Pg 1342 Pg 1343 Pg 1344 Pg 1345
Terms of Service
Privacy Policy
Contact: info@tinkutara.com