Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1341

Question Number 78207    Answers: 1   Comments: 6

what minimum value of f(x)= 9tan^2 (x)+4cot^2 (x)

$${what}\:{minimum}\: \\ $$$${value}\:{of}\:{f}\left({x}\right)=\:\mathrm{9tan}\:^{\mathrm{2}} \left({x}\right)+\mathrm{4cot}\:^{\mathrm{2}} \left({x}\right) \\ $$

Question Number 78198    Answers: 1   Comments: 4

Question Number 78177    Answers: 1   Comments: 10

what equation of ellips with F_1 (1,2) F_2 (3,4) and a = (√3)

$${what}\:{equation}\:{of}\:{ellips} \\ $$$${with}\:{F}_{\mathrm{1}} \left(\mathrm{1},\mathrm{2}\right)\:{F}_{\mathrm{2}} \left(\mathrm{3},\mathrm{4}\right)\:{and}\:{a}\:=\:\sqrt{\mathrm{3}} \\ $$

Question Number 78168    Answers: 0   Comments: 6

Solve for x, y, z if: x^3 + y^3 + z^3 = 42

$$\mathrm{Solve}\:\mathrm{for}\:\:\mathrm{x},\:\mathrm{y},\:\mathrm{z}\:\:\mathrm{if}:\:\:\mathrm{x}^{\mathrm{3}} \:+\:\mathrm{y}^{\mathrm{3}} \:+\:\mathrm{z}^{\mathrm{3}} \:\:=\:\:\mathrm{42} \\ $$

Question Number 78163    Answers: 0   Comments: 2

∫ (√(1 + 3 sin(θ) + sin^2 (θ))) dθ

$$\int\:\sqrt{\mathrm{1}\:+\:\mathrm{3}\:\mathrm{sin}\left(\theta\right)\:+\:\mathrm{sin}^{\mathrm{2}} \left(\theta\right)}\:\:\mathrm{d}\theta \\ $$

Question Number 78162    Answers: 0   Comments: 4

Find the sum of nth term Σ_(k = 1) ^n (1/k^2 )

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{nth}\:\mathrm{term} \\ $$$$\:\:\:\underset{\mathrm{k}\:=\:\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\:\frac{\mathrm{1}}{\mathrm{k}^{\mathrm{2}} } \\ $$

Question Number 78161    Answers: 1   Comments: 0

Question Number 78160    Answers: 0   Comments: 1

find the term independent of x in [ ((x−1)/x)]^9

$$\mathrm{find}\:\mathrm{the}\:\mathrm{term}\:\mathrm{independent}\:\mathrm{of}\:\mathrm{x}\:\mathrm{in} \\ $$$$\:\:\left[\:\:\frac{\mathrm{x}−\mathrm{1}}{\mathrm{x}}\right]^{\mathrm{9}} \\ $$

Question Number 78156    Answers: 0   Comments: 1

Given that u_(n + 1) = (a_n /2) + 5 evalatuate lim_(x→∞) a_n deduce if a_(n ) is convergent or divergent.

$$\mathrm{Given}\:\mathrm{that}\:{u}_{{n}\:+\:\mathrm{1}} =\:\frac{{a}_{{n}} }{\mathrm{2}}\:+\:\mathrm{5}\:\:\: \\ $$$${evalatuate}\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{a}_{{n}} \\ $$$${deduce}\:{if}\:{a}_{{n}\:} \:{is}\:{convergent}\:{or}\:{divergent}. \\ $$

Question Number 78153    Answers: 1   Comments: 1

Question Number 78147    Answers: 0   Comments: 0

Question Number 78136    Answers: 1   Comments: 5

give the equation of tangente at p(x_0 ,f(x_0 )) 1)f(x)=e^(−x^2 ) ln(1−2x) x_0 =−1 2)f(x)=(x^2 −3)arctan(x^2 ) x_0 =1 3) f(x) =((e^(−x) sin(πx))/(x^2 +3)) x_0 =(1/2) 4) f(x)=e^(−x) (√(e^x^2 −1)) and x_0 = 2

$${give}\:{the}\:{equation}\:{of}\:{tangente} \\ $$$${at}\:\:{p}\left({x}_{\mathrm{0}} ,{f}\left({x}_{\mathrm{0}} \right)\right) \\ $$$$\left.\mathrm{1}\right){f}\left({x}\right)={e}^{−{x}^{\mathrm{2}} } {ln}\left(\mathrm{1}−\mathrm{2}{x}\right)\:\:\:{x}_{\mathrm{0}} =−\mathrm{1} \\ $$$$\left.\mathrm{2}\right){f}\left({x}\right)=\left({x}^{\mathrm{2}} −\mathrm{3}\right){arctan}\left({x}^{\mathrm{2}} \right) \\ $$$${x}_{\mathrm{0}} \:\:=\mathrm{1} \\ $$$$\left.\mathrm{3}\right)\:{f}\left({x}\right)\:=\frac{{e}^{−{x}} {sin}\left(\pi{x}\right)}{{x}^{\mathrm{2}} \:+\mathrm{3}}\:\:\:{x}_{\mathrm{0}} =\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\left.\mathrm{4}\right)\:{f}\left({x}\right)={e}^{−{x}} \sqrt{{e}^{{x}^{\mathrm{2}} } −\mathrm{1}} \\ $$$${and}\:{x}_{\mathrm{0}} =\:\mathrm{2} \\ $$$$ \\ $$

Question Number 78135    Answers: 0   Comments: 0

explicit f(x)=∫_0 ^∞ ((arctan(xt))/(t^2 +x^2 ))dt with x>0

$${explicit}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left({xt}\right)}{{t}^{\mathrm{2}} +{x}^{\mathrm{2}} }{dt} \\ $$$${with}\:{x}>\mathrm{0} \\ $$

Question Number 78134    Answers: 0   Comments: 1

find the value of ∫_(−∞) ^(+∞) ((arctan(3x^2 ))/(x^2 +4))dx

$${find}\:{the}\:{value}\:{of}\:\:\int_{−\infty} ^{+\infty} \:\frac{{arctan}\left(\mathrm{3}{x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} +\mathrm{4}}{dx} \\ $$

Question Number 78122    Answers: 1   Comments: 3

lim_(x→1^− ) lnx∙ln(1−x)=?

$$\underset{{x}\rightarrow\mathrm{1}^{−} } {\mathrm{lim}}{lnx}\centerdot{ln}\left(\mathrm{1}−{x}\right)=? \\ $$

Question Number 78119    Answers: 1   Comments: 6

find the center point ellips 5x^2 +8y^2 −24x−24y+4xy=0

$${find}\:{the}\:{center}\:{point}\:{ellips} \\ $$$$\mathrm{5}{x}^{\mathrm{2}} +\mathrm{8}{y}^{\mathrm{2}} −\mathrm{24}{x}−\mathrm{24}{y}+\mathrm{4}{xy}=\mathrm{0} \\ $$

Question Number 78254    Answers: 0   Comments: 0

∫_0 ^1 ((xln(ln((1/x))))/((x^2 −x+1)^2 ))dx i poste solution later!

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{xln}\left(\mathrm{ln}\left(\frac{\mathrm{1}}{\mathrm{x}}\right)\right)}{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }\mathrm{dx} \\ $$$$\mathrm{i}\:\mathrm{poste}\:\mathrm{solution}\:\mathrm{later}! \\ $$

Question Number 78108    Answers: 1   Comments: 1

Question Number 78106    Answers: 0   Comments: 1

Question Number 78105    Answers: 1   Comments: 0

Question Number 78102    Answers: 1   Comments: 1

Question Number 78099    Answers: 0   Comments: 0

anyone have problems about limits and derivatives? i need it

$${anyone}\:{have}\:{problems}\:{about} \\ $$$${limits}\:{and}\:{derivatives}?\:{i}\:{need}\:{it} \\ $$

Question Number 78083    Answers: 1   Comments: 5

Question Number 78075    Answers: 0   Comments: 5

expressing P(x) = ((x^2 + x)/((x−3)(x^2 −2))) in partial fractions gives A. (A/((x−3))) + ((Bx + C)/((x^2 −2))) B. (A/(x−3)) + (B/(x−2)) + (C/(x+2)) C. (A/(x−3)) + (B/(x−(√2))) + (C/(x + (√2))) D. ((Ax + B)/(x−3)) + (C/(x^2 −2))

$${expressing}\:\:{P}\left({x}\right)\:=\:\frac{{x}^{\mathrm{2}} \:+\:{x}}{\left({x}−\mathrm{3}\right)\left({x}^{\mathrm{2}} −\mathrm{2}\right)}\:{in}\:{partial}\:{fractions}\:{gives} \\ $$$${A}.\:\:\frac{{A}}{\left({x}−\mathrm{3}\right)}\:+\:\frac{{Bx}\:+\:{C}}{\left({x}^{\mathrm{2}} −\mathrm{2}\right)}\: \\ $$$${B}.\:\:\frac{{A}}{{x}−\mathrm{3}}\:+\:\frac{{B}}{{x}−\mathrm{2}}\:+\:\frac{{C}}{{x}+\mathrm{2}} \\ $$$${C}.\:\frac{{A}}{{x}−\mathrm{3}}\:+\:\frac{{B}}{{x}−\sqrt{\mathrm{2}}}\:+\:\frac{{C}}{{x}\:+\:\sqrt{\mathrm{2}}} \\ $$$${D}.\:\frac{{Ax}\:+\:{B}}{{x}−\mathrm{3}}\:+\:\frac{{C}}{{x}^{\mathrm{2}} −\mathrm{2}} \\ $$

Question Number 78074    Answers: 2   Comments: 0

evaluate ∫_1 ^4 sinh^(−1) x dx and ∫_1 ^(1/2) tanh^(−1) x dx

$${evaluate}\:\int_{\mathrm{1}} ^{\mathrm{4}} \mathrm{sinh}\:^{−\mathrm{1}} {x}\:{dx}\:\:{and}\:\underset{\mathrm{1}} {\overset{\frac{\mathrm{1}}{\mathrm{2}}} {\int}}\mathrm{tanh}\:^{−\mathrm{1}} {x}\:{dx} \\ $$

Question Number 78073    Answers: 0   Comments: 1

anyone have Lambert W function formula. please post in forum

$${anyone}\:{have}\:{Lambert}\:{W}\:{function} \\ $$$${formula}.\:{please}\:{post}\:{in}\:{forum} \\ $$

  Pg 1336      Pg 1337      Pg 1338      Pg 1339      Pg 1340      Pg 1341      Pg 1342      Pg 1343      Pg 1344      Pg 1345   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com