Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1334
Question Number 79615 Answers: 0 Comments: 3
$${prove}\:{that}\:{with}\:{using}\:{hypergeometric}\:{function} \\ $$$$\int_{\mathrm{0}} ^{\pi} {sin}\left({x}^{\mathrm{2}} \right)=\frac{\pi^{\mathrm{3}} }{\mathrm{3}}\:\mathrm{1}{F}_{\mathrm{2}} \left[\frac{\mathrm{3}}{\mathrm{4}};\frac{\mathrm{3}}{\mathrm{2}};\frac{\mathrm{7}}{\mathrm{4}};\frac{−\pi^{\mathrm{4}} }{\mathrm{4}}\right]\: \\ $$
Question Number 79609 Answers: 1 Comments: 1
Question Number 79607 Answers: 0 Comments: 1
$${Solve}\:{this} \\ $$$$\int_{} \frac{\left({x}−{yz}\right)}{\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{xyz}\right)^{\mathrm{3}/\mathrm{2}} }{dz} \\ $$$$ \\ $$$$ \\ $$
Question Number 79588 Answers: 1 Comments: 3
$${f}\left({x}\right)\:=\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}\sqrt{\mathrm{2}{x}}+\mathrm{2}{x}}+\frac{{x}}{\mathrm{4}} \\ $$$$\mathrm{prove}\:\mathrm{that}\:{f}\left({x}\right)\:\geqslant\:\frac{\mathrm{3}}{\mathrm{8}}\:. \\ $$
Question Number 79580 Answers: 0 Comments: 5
$$\mathrm{does}\:\mathrm{this}\:\mathrm{matter}\:\mathrm{reasonable} \\ $$$$\int\:\mathrm{sin}\:^{\mathrm{x}} \left(\mathrm{x}\right)\:\mathrm{dx}\:? \\ $$
Question Number 79572 Answers: 1 Comments: 1
Question Number 79571 Answers: 1 Comments: 5
$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{x}: \\ $$$$\:\sqrt[{\mathrm{3}}]{\mathrm{x}\:\:+\:\:\sqrt[{\mathrm{3}}]{\mathrm{x}\:\:+\:\:\sqrt[{\mathrm{3}}]{\mathrm{x}\:\:+\:\:...}}}\:\:\:\:\:\:\:=\:\:\:\:\:\sqrt[{\mathrm{3}}]{\mathrm{x}\:\:\sqrt[{\mathrm{3}}]{\mathrm{x}\:\:\sqrt[{\mathrm{3}}]{\mathrm{x}\:\:....}}} \\ $$
Question Number 79613 Answers: 1 Comments: 0
$$\mathrm{3}{xy}\left(\mathrm{2}{x}−{y}\right)−\mathrm{3}{bx}+\mathrm{3}{c}=\mathrm{0} \\ $$$$\mathrm{3}{xy}\left({x}−\mathrm{2}{y}\right)−\mathrm{3}{by}−\mathrm{3}{c}=\mathrm{0} \\ $$$${find}\:{non}-{zero},\:{real}\:{values} \\ $$$${of}\:{x},{y}\:\:{if}\:{b},{c}\in\mathbb{R}. \\ $$
Question Number 79612 Answers: 1 Comments: 0
$$\int\:\frac{\mathrm{dx}}{\sqrt{\mathrm{x}\:}\left(\sqrt[{\mathrm{4}\:}]{\mathrm{x}}+\mathrm{1}\right)^{\mathrm{10}} }\:=\:? \\ $$
Question Number 79565 Answers: 0 Comments: 2
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{x}−\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{1}}\:\right)×\left(\frac{\mathrm{ln}\left(\mathrm{e}^{\mathrm{x}} +\mathrm{x}\right)}{\mathrm{x}}\right) \\ $$
Question Number 79560 Answers: 0 Comments: 1
$$\sqrt{\mathrm{1}+\mathrm{x}}\:\leqslant\:\sqrt[{\mathrm{4}\:}]{\mathrm{5}−\mathrm{x}} \\ $$
Question Number 79538 Answers: 1 Comments: 13
Question Number 79536 Answers: 0 Comments: 4
Question Number 79532 Answers: 1 Comments: 2
$${Given}\:\:{function}\:\:{f}\::\:\mathbb{R}\:\:\Rightarrow\:\:\mathbb{R} \\ $$$$\:\:\:\:\:\:\:\:{x}^{\mathrm{2}} \:{f}\left({x}\right)\:+\:{f}\left(\mathrm{1}\:−\:{x}\right)\:\:=\:\:\mathrm{2}{x}\:−\:{x}^{\mathrm{4}} \\ $$$${f}\left(\mathrm{2019}\right)\:\:=\:\:? \\ $$
Question Number 79531 Answers: 0 Comments: 1
$$\underset{\mathrm{0}} {\int}^{\mathrm{1}} \:\frac{\mathrm{ln}\left(\frac{\mathrm{1}}{\mathrm{x}}+\mathrm{x}\right)}{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\mathrm{dx}\:? \\ $$
Question Number 79528 Answers: 0 Comments: 0
$${find}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{x}^{\mathrm{3}} } {cos}\left({x}^{\mathrm{2}} \right){dx} \\ $$
Question Number 79527 Answers: 0 Comments: 1
$${find}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{x}^{\mathrm{3}} } {dx} \\ $$
Question Number 79520 Answers: 1 Comments: 2
Question Number 79516 Answers: 0 Comments: 3
Question Number 79515 Answers: 0 Comments: 0
Question Number 79513 Answers: 0 Comments: 1
$${Q}.{solve} \\ $$$${if}\:{t}^{\mathrm{2}} ={n}^{\mathrm{2}} {cos}^{\mathrm{2}} \left({x}\right)+{m}^{\mathrm{2}} {sin}^{\mathrm{2}} \left({x}\right) \\ $$$$ \\ $$$${then}\:{show}\:{that}: \\ $$$${t}+\frac{{d}^{\mathrm{2}} {t}}{{dx}^{\mathrm{2}} }=\frac{\left({nm}\right)^{\mathrm{2}} }{{t}^{\mathrm{3}} } \\ $$$$ \\ $$
Question Number 79512 Answers: 0 Comments: 0
Question Number 79852 Answers: 2 Comments: 1
Question Number 79500 Answers: 1 Comments: 0
$$\int\left(\mathrm{cot}\:^{\mathrm{2}} {x}+\mathrm{cot}\:^{\mathrm{4}} {x}\right){dx} \\ $$
Question Number 79499 Answers: 0 Comments: 2
$$\underset{\mathrm{0}} {\overset{\mathrm{30}\pi} {\int}}\mid\mathrm{sin}\:\mathrm{x}\mid\:\mathrm{dx}=\: \\ $$
Question Number 79491 Answers: 0 Comments: 4
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{used}\:\mathrm{place} \\ $$
Pg 1329 Pg 1330 Pg 1331 Pg 1332 Pg 1333 Pg 1334 Pg 1335 Pg 1336 Pg 1337 Pg 1338
Terms of Service
Privacy Policy
Contact: info@tinkutara.com