Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1327

Question Number 77887    Answers: 1   Comments: 0

∫(e^(sinh(x)) /(cosh(x))) dx

$$\int\frac{{e}^{{sinh}\left({x}\right)} }{{cosh}\left({x}\right)}\:{dx} \\ $$

Question Number 77886    Answers: 0   Comments: 1

calculate ∫_0 ^∞ ((arctan(x^2 +x^(−2) ))/(x^2 +a^2 ))dx with a>0 2) find the value of ∫_0 ^∞ ((arctan(x^2 +x^(−2) ))/(x^2 +1))dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left({x}^{\mathrm{2}} \:+{x}^{−\mathrm{2}} \right)}{{x}^{\mathrm{2}} \:+{a}^{\mathrm{2}} }{dx}\:\:{with}\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left({x}^{\mathrm{2}} \:+{x}^{−\mathrm{2}} \right)}{{x}^{\mathrm{2}} \:+\mathrm{1}}{dx} \\ $$

Question Number 77885    Answers: 2   Comments: 0

solve for : x 1.(√((x−a)(x−b)))+(√((x−b)(x−c)))+(√((x−c)(x−a)))=d [a,b,c,d∈R try for: a=4,b=3,c=2,d=1] 2. (x−a^2 )(√(x−a))+(x−a)(√(x−a^2 ))=a^2 +a+1 3. (x−a^2 )(√(x^2 −a))+(x^2 −a)(√(x−a^2 ))=a^2 +a+1 [a∈R try for: a=(1/2) ]

$$\boldsymbol{\mathrm{solve}}\:\boldsymbol{\mathrm{for}}\::\:\boldsymbol{\mathrm{x}} \\ $$$$\mathrm{1}.\sqrt{\left(\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{a}}\right)\left(\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{b}}\right)}+\sqrt{\left(\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{b}}\right)\left(\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{c}}\right)}+\sqrt{\left(\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{c}}\right)\left(\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{a}}\right)}=\boldsymbol{\mathrm{d}} \\ $$$$\left[\boldsymbol{\mathrm{a}},\boldsymbol{\mathrm{b}},\boldsymbol{\mathrm{c}},\boldsymbol{\mathrm{d}}\in\boldsymbol{\mathrm{R}}\right. \\ $$$$\left.\mathrm{try}\:\mathrm{for}:\:\:\mathrm{a}=\mathrm{4},\mathrm{b}=\mathrm{3},\mathrm{c}=\mathrm{2},\mathrm{d}=\mathrm{1}\right] \\ $$$$\mathrm{2}.\:\left(\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{a}}^{\mathrm{2}} \right)\sqrt{\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{a}}}+\left(\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{a}}\right)\sqrt{\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{a}}^{\mathrm{2}} }=\boldsymbol{\mathrm{a}}^{\mathrm{2}} +\boldsymbol{\mathrm{a}}+\mathrm{1} \\ $$$$\mathrm{3}.\:\left(\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{a}}^{\mathrm{2}} \right)\sqrt{\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\boldsymbol{\mathrm{a}}}+\left(\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\boldsymbol{\mathrm{a}}\right)\sqrt{\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{a}}^{\mathrm{2}} }=\boldsymbol{\mathrm{a}}^{\mathrm{2}} +\boldsymbol{\mathrm{a}}+\mathrm{1} \\ $$$$\left[\boldsymbol{\mathrm{a}}\in\boldsymbol{\mathrm{R}}\right. \\ $$$$\left.\mathrm{try}\:\mathrm{for}:\:\mathrm{a}=\frac{\mathrm{1}}{\mathrm{2}}\:\right] \\ $$$$ \\ $$

Question Number 77883    Answers: 1   Comments: 7

Question Number 77881    Answers: 0   Comments: 5

Question Number 77879    Answers: 0   Comments: 0

∫_1 ^∞ (1/(√(x^3 +5))) dx

$$\int_{\mathrm{1}} ^{\infty} \frac{\mathrm{1}}{\sqrt{{x}^{\mathrm{3}} +\mathrm{5}}}\:{dx} \\ $$

Question Number 77872    Answers: 2   Comments: 6

show that f(x)=2r^3 +5x−1 has a zero in the interval [0.1].

$${show}\:{that}\:{f}\left({x}\right)=\mathrm{2}{r}^{\mathrm{3}} +\mathrm{5}{x}−\mathrm{1}\:{has}\:{a}\:{zero}\:{in}\:{the}\:{interval}\:\left[\mathrm{0}.\mathrm{1}\right]. \\ $$

Question Number 77889    Answers: 0   Comments: 2

Show that the capacitance of two concentric sphere that have a and b as respective radii of the inner and outer sphere is ((4π∈_o ab)/(b−a))

$${Show}\:{that}\:{the}\:{capacitance} \\ $$$${of}\:{two}\:{concentric}\:{sphere} \\ $$$${that}\:{have}\:{a}\:{and}\:{b}\:{as} \\ $$$${respective}\:{radii}\:{of}\:{the} \\ $$$${inner}\:{and}\:{outer}\:{sphere} \\ $$$${is}\:\frac{\mathrm{4}\pi\in_{{o}} {ab}}{{b}−{a}} \\ $$

Question Number 77864    Answers: 1   Comments: 1

Question Number 77859    Answers: 2   Comments: 1

y = ∣x∣^(∣x∣) (dy/dx) = ?

$${y}\:=\:\mid{x}\mid\:^{\mid{x}\mid} \:\: \\ $$$$\frac{{dy}}{{dx}}\:=\:? \\ $$

Question Number 77856    Answers: 1   Comments: 1

l_(x→0) im(((e^x −x−1)/x))

$$\underset{{x}\rightarrow\mathrm{0}} {{l}im}\left(\frac{{e}^{{x}} −{x}−\mathrm{1}}{{x}}\right) \\ $$

Question Number 77855    Answers: 0   Comments: 0

Question Number 77854    Answers: 1   Comments: 1

a circle offends the y axis at point(0,b) and through the intersection of the curve y = x −2(√x)+(1/4). value of b = ?

$${a}\:{circle}\: \\ $$$${offends}\:{the}\:{y}\:{axis}\:{at}\:{point}\left(\mathrm{0},{b}\right)\: \\ $$$${and}\:{through}\:{the}\:{intersection} \\ $$$${of}\:{the}\:{curve}\:{y}\:=\:{x}\:−\mathrm{2}\sqrt{{x}}+\frac{\mathrm{1}}{\mathrm{4}}.\: \\ $$$${value}\:{of}\:{b}\:=\:? \\ $$

Question Number 77852    Answers: 0   Comments: 0

5245

$$\mathrm{5245} \\ $$

Question Number 77848    Answers: 0   Comments: 3

Question Number 77845    Answers: 0   Comments: 0

In the equation B=μ_0 H×μ_0 M why is the polarization of the vacuum accounted for by constant μ_0 if the vacuum is absolutely empty?

$$\boldsymbol{\mathrm{I}}\mathrm{n}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\:\boldsymbol{\mathrm{B}}=\mu_{\mathrm{0}} \boldsymbol{\mathrm{H}}×\mu_{\mathrm{0}} \boldsymbol{\mathrm{M}}\: \\ $$$$\mathrm{why}\:\mathrm{is}\:\mathrm{the}\:\mathrm{polarization}\:\mathrm{of}\:\mathrm{the}\:\mathrm{vacuum}\: \\ $$$$\mathrm{accounted}\:\mathrm{for}\:\mathrm{by}\: \\ $$$$\mathrm{constant}\:\mu_{\mathrm{0}} \\ $$$$\mathrm{if}\:\mathrm{the}\:\mathrm{vacuum}\:\mathrm{is}\:\mathrm{absolutely}\:\mathrm{empty}? \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Question Number 77842    Answers: 1   Comments: 0

given f(x)= x^2 +sin(2x) + ∫ _0 ^(π/4) f(x)dx f((π/2))=?

$${given}\: \\ $$$${f}\left({x}\right)=\:{x}^{\mathrm{2}} +\mathrm{sin}\left(\mathrm{2}{x}\right)\:+\:\int\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{4}}} {\:}}{f}\left({x}\right){dx} \\ $$$${f}\left(\frac{\pi}{\mathrm{2}}\right)=? \\ $$

Question Number 77838    Answers: 0   Comments: 0

anyone know link the Latex for phone?

$${anyone}\:{know} \\ $$$${link}\:{the}\:{Latex}\:{for}\:{phone}? \\ $$

Question Number 77819    Answers: 2   Comments: 0

Question Number 77817    Answers: 0   Comments: 3

∫(dx/(x^3 (x^2 +2x+5)^4 ))

$$\int\frac{{dx}}{{x}^{\mathrm{3}} \left({x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{5}\right)^{\mathrm{4}} } \\ $$$$ \\ $$

Question Number 77816    Answers: 0   Comments: 0

∫sin(x^2 ) sin(x) dx

$$\int{sin}\left({x}^{\mathrm{2}} \right)\:{sin}\left({x}\right)\:{dx} \\ $$

Question Number 77813    Answers: 0   Comments: 0

What is a way to approximate some large number such as: Speed of light and Avogadro constant instead of write the whole number

$$\mathrm{What}\:\mathrm{is}\:\mathrm{a}\:\mathrm{way}\:\mathrm{to}\:\mathrm{approximate} \\ $$$$\mathrm{some}\:\mathrm{large}\:\mathrm{number}\:\mathrm{such}\:\mathrm{as}: \\ $$$$\mathrm{Speed}\:\mathrm{of}\:\mathrm{light}\:\mathrm{and}\:\mathrm{Avogadro} \\ $$$$\mathrm{constant}\:\mathrm{instead}\:\mathrm{of}\:\mathrm{write}\:\mathrm{the} \\ $$$$\mathrm{whole}\:\mathrm{number} \\ $$

Question Number 77810    Answers: 2   Comments: 0

what is minimum value of function f(x)= (√(x^2 +4)) +(√(x^2 −24x+153))

$${what}\:{is}\:{minimum}\:{value} \\ $$$${of}\:{function}\:{f}\left({x}\right)= \\ $$$$\sqrt{{x}^{\mathrm{2}} +\mathrm{4}}\:+\sqrt{{x}^{\mathrm{2}} −\mathrm{24}{x}+\mathrm{153}} \\ $$

Question Number 77805    Answers: 1   Comments: 0

Solve for x ((8^x + 27^x )/(12^x + 18^x )) = (7/6)

$${Solve}\:{for}\:{x} \\ $$$$\frac{\mathrm{8}^{{x}} \:+\:\mathrm{27}^{{x}} }{\mathrm{12}^{{x}} \:+\:\mathrm{18}^{{x}} }\:=\:\frac{\mathrm{7}}{\mathrm{6}} \\ $$

Question Number 77804    Answers: 0   Comments: 2

Question Number 77803    Answers: 1   Comments: 0

solve (4x^2 +4x+1)y′′−(12x+6)y′−8x^3 −1=12x^2 −16y+6x

$${solve} \\ $$$$\left(\mathrm{4}{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{1}\right){y}''−\left(\mathrm{12}{x}+\mathrm{6}\right){y}'−\mathrm{8}{x}^{\mathrm{3}} −\mathrm{1}=\mathrm{12}{x}^{\mathrm{2}} −\mathrm{16}{y}+\mathrm{6}{x} \\ $$

  Pg 1322      Pg 1323      Pg 1324      Pg 1325      Pg 1326      Pg 1327      Pg 1328      Pg 1329      Pg 1330      Pg 1331   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com