Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1327
Question Number 77887 Answers: 1 Comments: 0
$$\int\frac{{e}^{{sinh}\left({x}\right)} }{{cosh}\left({x}\right)}\:{dx} \\ $$
Question Number 77886 Answers: 0 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left({x}^{\mathrm{2}} \:+{x}^{−\mathrm{2}} \right)}{{x}^{\mathrm{2}} \:+{a}^{\mathrm{2}} }{dx}\:\:{with}\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left({x}^{\mathrm{2}} \:+{x}^{−\mathrm{2}} \right)}{{x}^{\mathrm{2}} \:+\mathrm{1}}{dx} \\ $$
Question Number 77885 Answers: 2 Comments: 0
$$\boldsymbol{\mathrm{solve}}\:\boldsymbol{\mathrm{for}}\::\:\boldsymbol{\mathrm{x}} \\ $$$$\mathrm{1}.\sqrt{\left(\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{a}}\right)\left(\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{b}}\right)}+\sqrt{\left(\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{b}}\right)\left(\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{c}}\right)}+\sqrt{\left(\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{c}}\right)\left(\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{a}}\right)}=\boldsymbol{\mathrm{d}} \\ $$$$\left[\boldsymbol{\mathrm{a}},\boldsymbol{\mathrm{b}},\boldsymbol{\mathrm{c}},\boldsymbol{\mathrm{d}}\in\boldsymbol{\mathrm{R}}\right. \\ $$$$\left.\mathrm{try}\:\mathrm{for}:\:\:\mathrm{a}=\mathrm{4},\mathrm{b}=\mathrm{3},\mathrm{c}=\mathrm{2},\mathrm{d}=\mathrm{1}\right] \\ $$$$\mathrm{2}.\:\left(\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{a}}^{\mathrm{2}} \right)\sqrt{\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{a}}}+\left(\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{a}}\right)\sqrt{\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{a}}^{\mathrm{2}} }=\boldsymbol{\mathrm{a}}^{\mathrm{2}} +\boldsymbol{\mathrm{a}}+\mathrm{1} \\ $$$$\mathrm{3}.\:\left(\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{a}}^{\mathrm{2}} \right)\sqrt{\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\boldsymbol{\mathrm{a}}}+\left(\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\boldsymbol{\mathrm{a}}\right)\sqrt{\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{a}}^{\mathrm{2}} }=\boldsymbol{\mathrm{a}}^{\mathrm{2}} +\boldsymbol{\mathrm{a}}+\mathrm{1} \\ $$$$\left[\boldsymbol{\mathrm{a}}\in\boldsymbol{\mathrm{R}}\right. \\ $$$$\left.\mathrm{try}\:\mathrm{for}:\:\mathrm{a}=\frac{\mathrm{1}}{\mathrm{2}}\:\right] \\ $$$$ \\ $$
Question Number 77883 Answers: 1 Comments: 7
Question Number 77881 Answers: 0 Comments: 5
Question Number 77879 Answers: 0 Comments: 0
$$\int_{\mathrm{1}} ^{\infty} \frac{\mathrm{1}}{\sqrt{{x}^{\mathrm{3}} +\mathrm{5}}}\:{dx} \\ $$
Question Number 77872 Answers: 2 Comments: 6
$${show}\:{that}\:{f}\left({x}\right)=\mathrm{2}{r}^{\mathrm{3}} +\mathrm{5}{x}−\mathrm{1}\:{has}\:{a}\:{zero}\:{in}\:{the}\:{interval}\:\left[\mathrm{0}.\mathrm{1}\right]. \\ $$
Question Number 77889 Answers: 0 Comments: 2
$${Show}\:{that}\:{the}\:{capacitance} \\ $$$${of}\:{two}\:{concentric}\:{sphere} \\ $$$${that}\:{have}\:{a}\:{and}\:{b}\:{as} \\ $$$${respective}\:{radii}\:{of}\:{the} \\ $$$${inner}\:{and}\:{outer}\:{sphere} \\ $$$${is}\:\frac{\mathrm{4}\pi\in_{{o}} {ab}}{{b}−{a}} \\ $$
Question Number 77864 Answers: 1 Comments: 1
Question Number 77859 Answers: 2 Comments: 1
$${y}\:=\:\mid{x}\mid\:^{\mid{x}\mid} \:\: \\ $$$$\frac{{dy}}{{dx}}\:=\:? \\ $$
Question Number 77856 Answers: 1 Comments: 1
$$\underset{{x}\rightarrow\mathrm{0}} {{l}im}\left(\frac{{e}^{{x}} −{x}−\mathrm{1}}{{x}}\right) \\ $$
Question Number 77855 Answers: 0 Comments: 0
Question Number 77854 Answers: 1 Comments: 1
$${a}\:{circle}\: \\ $$$${offends}\:{the}\:{y}\:{axis}\:{at}\:{point}\left(\mathrm{0},{b}\right)\: \\ $$$${and}\:{through}\:{the}\:{intersection} \\ $$$${of}\:{the}\:{curve}\:{y}\:=\:{x}\:−\mathrm{2}\sqrt{{x}}+\frac{\mathrm{1}}{\mathrm{4}}.\: \\ $$$${value}\:{of}\:{b}\:=\:? \\ $$
Question Number 77852 Answers: 0 Comments: 0
$$\mathrm{5245} \\ $$
Question Number 77848 Answers: 0 Comments: 3
Question Number 77845 Answers: 0 Comments: 0
$$\boldsymbol{\mathrm{I}}\mathrm{n}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\:\boldsymbol{\mathrm{B}}=\mu_{\mathrm{0}} \boldsymbol{\mathrm{H}}×\mu_{\mathrm{0}} \boldsymbol{\mathrm{M}}\: \\ $$$$\mathrm{why}\:\mathrm{is}\:\mathrm{the}\:\mathrm{polarization}\:\mathrm{of}\:\mathrm{the}\:\mathrm{vacuum}\: \\ $$$$\mathrm{accounted}\:\mathrm{for}\:\mathrm{by}\: \\ $$$$\mathrm{constant}\:\mu_{\mathrm{0}} \\ $$$$\mathrm{if}\:\mathrm{the}\:\mathrm{vacuum}\:\mathrm{is}\:\mathrm{absolutely}\:\mathrm{empty}? \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Question Number 77842 Answers: 1 Comments: 0
$${given}\: \\ $$$${f}\left({x}\right)=\:{x}^{\mathrm{2}} +\mathrm{sin}\left(\mathrm{2}{x}\right)\:+\:\int\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{4}}} {\:}}{f}\left({x}\right){dx} \\ $$$${f}\left(\frac{\pi}{\mathrm{2}}\right)=? \\ $$
Question Number 77838 Answers: 0 Comments: 0
$${anyone}\:{know} \\ $$$${link}\:{the}\:{Latex}\:{for}\:{phone}? \\ $$
Question Number 77819 Answers: 2 Comments: 0
Question Number 77817 Answers: 0 Comments: 3
$$\int\frac{{dx}}{{x}^{\mathrm{3}} \left({x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{5}\right)^{\mathrm{4}} } \\ $$$$ \\ $$
Question Number 77816 Answers: 0 Comments: 0
$$\int{sin}\left({x}^{\mathrm{2}} \right)\:{sin}\left({x}\right)\:{dx} \\ $$
Question Number 77813 Answers: 0 Comments: 0
$$\mathrm{What}\:\mathrm{is}\:\mathrm{a}\:\mathrm{way}\:\mathrm{to}\:\mathrm{approximate} \\ $$$$\mathrm{some}\:\mathrm{large}\:\mathrm{number}\:\mathrm{such}\:\mathrm{as}: \\ $$$$\mathrm{Speed}\:\mathrm{of}\:\mathrm{light}\:\mathrm{and}\:\mathrm{Avogadro} \\ $$$$\mathrm{constant}\:\mathrm{instead}\:\mathrm{of}\:\mathrm{write}\:\mathrm{the} \\ $$$$\mathrm{whole}\:\mathrm{number} \\ $$
Question Number 77810 Answers: 2 Comments: 0
$${what}\:{is}\:{minimum}\:{value} \\ $$$${of}\:{function}\:{f}\left({x}\right)= \\ $$$$\sqrt{{x}^{\mathrm{2}} +\mathrm{4}}\:+\sqrt{{x}^{\mathrm{2}} −\mathrm{24}{x}+\mathrm{153}} \\ $$
Question Number 77805 Answers: 1 Comments: 0
$${Solve}\:{for}\:{x} \\ $$$$\frac{\mathrm{8}^{{x}} \:+\:\mathrm{27}^{{x}} }{\mathrm{12}^{{x}} \:+\:\mathrm{18}^{{x}} }\:=\:\frac{\mathrm{7}}{\mathrm{6}} \\ $$
Question Number 77804 Answers: 0 Comments: 2
Question Number 77803 Answers: 1 Comments: 0
$${solve} \\ $$$$\left(\mathrm{4}{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{1}\right){y}''−\left(\mathrm{12}{x}+\mathrm{6}\right){y}'−\mathrm{8}{x}^{\mathrm{3}} −\mathrm{1}=\mathrm{12}{x}^{\mathrm{2}} −\mathrm{16}{y}+\mathrm{6}{x} \\ $$
Pg 1322 Pg 1323 Pg 1324 Pg 1325 Pg 1326 Pg 1327 Pg 1328 Pg 1329 Pg 1330 Pg 1331
Terms of Service
Privacy Policy
Contact: info@tinkutara.com