Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1327

Question Number 79452    Answers: 1   Comments: 1

∫_( 1) ^(2)^(1/7) (1/(x(2x^7 + 1))) dx =

$$\:\:\underset{\:\mathrm{1}} {\overset{\sqrt[{\mathrm{7}}]{\mathrm{2}}} {\int}}\:\frac{\mathrm{1}}{{x}\left(\mathrm{2}{x}^{\mathrm{7}} +\:\mathrm{1}\right)}\:{dx}\:= \\ $$

Question Number 79449    Answers: 1   Comments: 6

Question Number 79443    Answers: 1   Comments: 1

lim_(x→0) [(sin x)^(1/x) +((1/x))^(sin x) ] =

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left[\left(\mathrm{sin}\:\mathrm{x}\right)^{\frac{\mathrm{1}}{\mathrm{x}}} +\left(\frac{\mathrm{1}}{\mathrm{x}}\right)^{\mathrm{sin}\:\mathrm{x}} \right]\:= \\ $$

Question Number 79437    Answers: 0   Comments: 2

The value of tan 1° tan 2° tan 3°...tan 89° is

$$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\mathrm{tan}\:\mathrm{1}°\:\mathrm{tan}\:\mathrm{2}°\:\mathrm{tan}\:\mathrm{3}°...\mathrm{tan}\:\mathrm{89}° \\ $$$$\mathrm{is} \\ $$

Question Number 79435    Answers: 0   Comments: 1

16 cos ((2π)/(15)) cos ((4π)/(15)) cos ((8π)/(15)) cos ((14π)/(15)) =____.

$$\mathrm{16}\:\mathrm{cos}\:\frac{\mathrm{2}\pi}{\mathrm{15}}\:\mathrm{cos}\:\frac{\mathrm{4}\pi}{\mathrm{15}}\:\mathrm{cos}\:\frac{\mathrm{8}\pi}{\mathrm{15}}\:\mathrm{cos}\:\frac{\mathrm{14}\pi}{\mathrm{15}}\:=\_\_\_\_. \\ $$

Question Number 79424    Answers: 0   Comments: 0

Derive the width of the diffraction pattern for the case of (i)single slits (ii)double slits

$${Derive}\:{the}\:{width}\:{of}\:{the} \\ $$$${diffraction}\:{pattern}\:{for} \\ $$$${the}\:{case}\:{of} \\ $$$$\left({i}\right){single}\:{slits} \\ $$$$\left({ii}\right){double}\:{slits} \\ $$

Question Number 79423    Answers: 1   Comments: 0

solve for x and y sinh x − 2cosh y = 0 3cosh x + 6 sihn y = 5

$${solve}\:{for}\:{x}\:{and}\:{y}\: \\ $$$$\:\:\:{sinh}\:{x}\:−\:\mathrm{2}{cosh}\:{y}\:=\:\mathrm{0} \\ $$$$\:\:\:\mathrm{3}{cosh}\:{x}\:+\:\mathrm{6}\:{sihn}\:{y}\:=\:\mathrm{5} \\ $$

Question Number 79419    Answers: 0   Comments: 6

given f(x)=f(x+5) ∀x∈R If ∫ _7^9 f(x)=t and ∫ _2^6 f(x)dx = t^2 +4t−3 . find the value of t.

$$\mathrm{given}\: \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{f}\left(\mathrm{x}+\mathrm{5}\right)\:\forall\mathrm{x}\in\mathbb{R} \\ $$$$\mathrm{If}\:\int\:_{\mathrm{7}} ^{\mathrm{9}} \:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{t}\:\mathrm{and}\:\int\:_{\mathrm{2}} ^{\mathrm{6}} \:\mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}\:= \\ $$$$\mathrm{t}^{\mathrm{2}} +\mathrm{4t}−\mathrm{3}\:.\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{t}. \\ $$

Question Number 79417    Answers: 2   Comments: 3

For x,y∈R find the minimum and maximum of 2x^2 −3x+4y if x^2 +2y^2 −xy−5x−7y−30=0.

$${For}\:{x},{y}\in\mathbb{R}\:{find}\:{the}\:{minimum}\:{and} \\ $$$${maximum}\:{of}\:\mathrm{2}{x}^{\mathrm{2}} −\mathrm{3}{x}+\mathrm{4}{y} \\ $$$${if}\:{x}^{\mathrm{2}} +\mathrm{2}{y}^{\mathrm{2}} −{xy}−\mathrm{5}{x}−\mathrm{7}{y}−\mathrm{30}=\mathrm{0}. \\ $$

Question Number 79413    Answers: 0   Comments: 1

Question Number 79404    Answers: 0   Comments: 4

for every real number a , b such that a^2 +b^2 −4a−6b=2. what is the maximum and minimum value of the expression (√(a^2 +b^2 −8a−10b+41)) ?

$$\mathrm{for}\:\mathrm{every}\:\mathrm{real}\:\mathrm{number}\:\mathrm{a}\:,\:\mathrm{b}\: \\ $$$$\mathrm{such}\:\mathrm{that}\:\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} −\mathrm{4a}−\mathrm{6b}=\mathrm{2}.\: \\ $$$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{and}\: \\ $$$$\mathrm{minimum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\: \\ $$$$\mathrm{expression}\: \\ $$$$\sqrt{\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} −\mathrm{8a}−\mathrm{10b}+\mathrm{41}}\:? \\ $$

Question Number 79398    Answers: 0   Comments: 1

((x^2 −1)/(x^2 +1))dx

$$\frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{1}}{dx} \\ $$

Question Number 79395    Answers: 0   Comments: 2

given (x,y) is a point on circle x^2 +y^2 −6x+4y−23=0. find minimum and maximum value of 4x+3y

$$\mathrm{given}\:\left(\mathrm{x},\mathrm{y}\right)\:\mathrm{is}\:\mathrm{a}\:\:\mathrm{point}\:\mathrm{on}\:\mathrm{circle} \\ $$$$\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} −\mathrm{6x}+\mathrm{4y}−\mathrm{23}=\mathrm{0}. \\ $$$$\mathrm{find}\:\mathrm{minimum}\:\mathrm{and}\:\mathrm{maximum} \\ $$$$\mathrm{value}\:\mathrm{of}\:\mathrm{4x}+\mathrm{3y}\: \\ $$

Question Number 79394    Answers: 1   Comments: 0

Question Number 79377    Answers: 1   Comments: 3

Question Number 79374    Answers: 1   Comments: 0

Question Number 79373    Answers: 0   Comments: 0

find ∫_0 ^∞ e^(−(x^3 +(1/x^3 ))) dx

$${find}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−\left({x}^{\mathrm{3}} \:+\frac{\mathrm{1}}{{x}^{\mathrm{3}} }\right)} {dx} \\ $$

Question Number 79368    Answers: 2   Comments: 6

Question Number 79365    Answers: 1   Comments: 1

Question Number 79361    Answers: 1   Comments: 1

Question Number 79359    Answers: 0   Comments: 1

Question Number 79357    Answers: 0   Comments: 1

Question Number 79352    Answers: 1   Comments: 2

∫(dx/(1−(√(cos(x)))))

$$\int\frac{{dx}}{\mathrm{1}−\sqrt{{cos}\left({x}\right)}} \\ $$

Question Number 79351    Answers: 0   Comments: 1

Physic A generator(E=230V ; r≠0) supplies two receivers connected in parallel (E′_1 =180V ; r′_1 =5Ω and E′_2 =0V ;r′_2 =150Ω) 1. calculate the currents I_(1 ) and I_(2 ) passing through each receptor. 2.calculate the total delivred cur− rent I by the generator. which type is the second receiptor? Thank you for helping me sirs! For more details, E represents the electromotive force of generator ; r represents his internal resistance. E′ and r′ caracterise receiptors.

$$\mathrm{Physic} \\ $$$$ \\ $$$$\mathrm{A}\:\mathrm{generator}\left(\mathrm{E}=\mathrm{230V}\:;\:\mathrm{r}\neq\mathrm{0}\right)\:\mathrm{supplies} \\ $$$$\mathrm{two}\:\mathrm{receivers}\:\mathrm{connected}\:\mathrm{in}\:\mathrm{parallel} \\ $$$$\left(\mathrm{E}'_{\mathrm{1}} =\mathrm{180V}\:;\:\mathrm{r}'_{\mathrm{1}} =\mathrm{5}\Omega\:\mathrm{and}\:\mathrm{E}'_{\mathrm{2}} =\mathrm{0V}\:;\mathrm{r}'_{\mathrm{2}} =\mathrm{150}\Omega\right) \\ $$$$ \\ $$$$\mathrm{1}.\:\mathrm{calculate}\:\mathrm{the}\:\mathrm{currents}\:\mathrm{I}_{\mathrm{1}\:} \mathrm{and}\:\mathrm{I}_{\mathrm{2}\:} \\ $$$$\mathrm{passing}\:\mathrm{through}\:\mathrm{each}\:\mathrm{receptor}. \\ $$$$\mathrm{2}.\mathrm{calculate}\:\mathrm{the}\:\mathrm{total}\:\mathrm{delivred}\:\mathrm{cur}− \\ $$$$\mathrm{rent}\:\mathrm{I}\:\mathrm{by}\:\mathrm{the}\:\mathrm{generator}. \\ $$$$\mathrm{which}\:\mathrm{type}\:\mathrm{is}\:\mathrm{the}\:\mathrm{second}\:\mathrm{receiptor}? \\ $$$$ \\ $$$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{for}\:\mathrm{helping}\:\mathrm{me}\:\mathrm{sirs}! \\ $$$$ \\ $$$$\mathrm{For}\:\mathrm{more}\:\mathrm{details},\:\mathrm{E}\:\mathrm{represents}\:\mathrm{the} \\ $$$$\mathrm{electromotive}\:\mathrm{force}\:\mathrm{of}\:\mathrm{generator} \\ $$$$;\:\mathrm{r}\:{represents}\:{his}\:{internal}\:{resistance}. \\ $$$$\mathrm{E}'\:\mathrm{and}\:\mathrm{r}'\:\mathrm{caracterise}\:\mathrm{receiptors}. \\ $$

Question Number 79360    Answers: 0   Comments: 0

Question Number 79340    Answers: 1   Comments: 3

  Pg 1322      Pg 1323      Pg 1324      Pg 1325      Pg 1326      Pg 1327      Pg 1328      Pg 1329      Pg 1330      Pg 1331   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com