Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1324

Question Number 81874    Answers: 0   Comments: 2

If A= [(( 1),(−5),( 7)),(( 0),( 7),( 9)),((11),( 8),( 9)) ] then trace of matrix A is

$$\mathrm{If}\:{A}=\begin{bmatrix}{\:\:\mathrm{1}}&{−\mathrm{5}}&{\:\:\:\mathrm{7}}\\{\:\:\mathrm{0}}&{\:\:\:\:\mathrm{7}}&{\:\:\:\mathrm{9}}\\{\mathrm{11}}&{\:\:\:\:\mathrm{8}}&{\:\:\:\mathrm{9}}\end{bmatrix}\:\mathrm{then}\:\mathrm{trace}\:\mathrm{of}\: \\ $$$$\mathrm{matrix}\:{A}\:\mathrm{is} \\ $$

Question Number 81873    Answers: 1   Comments: 1

determinant (((sin^2 x),(cos^2 x),1),((cos^2 x),(sin^2 x),1),((−10),( 12),2))=

$$\begin{vmatrix}{\mathrm{sin}^{\mathrm{2}} {x}}&{\mathrm{cos}^{\mathrm{2}} {x}}&{\mathrm{1}}\\{\mathrm{cos}^{\mathrm{2}} {x}}&{\mathrm{sin}^{\mathrm{2}} {x}}&{\mathrm{1}}\\{−\mathrm{10}}&{\:\:\mathrm{12}}&{\mathrm{2}}\end{vmatrix}= \\ $$

Question Number 81872    Answers: 1   Comments: 0

If every element of a third order determinant of value △ is multiplied by 5, then the value of new determinant is

$$\mathrm{If}\:\mathrm{every}\:\mathrm{element}\:\mathrm{of}\:\mathrm{a}\:\mathrm{third}\:\mathrm{order} \\ $$$$\mathrm{determinant}\:\mathrm{of}\:\mathrm{value}\:\bigtriangleup\:\mathrm{is}\:\mathrm{multiplied}\:\mathrm{by} \\ $$$$\mathrm{5},\:\mathrm{then}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{new}\:\mathrm{determinant}\:\mathrm{is} \\ $$

Question Number 81871    Answers: 1   Comments: 3

a_1 =4 a_(n+1) =((4a_n +3)/(a_n +2)) find a_n =?

$${a}_{\mathrm{1}} =\mathrm{4} \\ $$$${a}_{{n}+\mathrm{1}} =\frac{\mathrm{4}{a}_{{n}} +\mathrm{3}}{{a}_{{n}} +\mathrm{2}} \\ $$$${find}\:{a}_{{n}} =? \\ $$

Question Number 81854    Answers: 1   Comments: 1

Question Number 81853    Answers: 1   Comments: 2

lim_(x→∞) {n ∫_0 ^1 (x^n /(x^3 +1)) dx } = ?

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left\{{n}\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{{x}^{{n}} }{{x}^{\mathrm{3}} +\mathrm{1}}\:{dx}\:\right\}\:=\:? \\ $$

Question Number 81843    Answers: 2   Comments: 5

Question Number 81851    Answers: 0   Comments: 0

1)find ∫ (dx/((x+1)^3 (x^2 +1)^2 )) 2) calculate ∫_0 ^∞ (dx/((x+1)^3 (x^2 +1)^2 ))

$$\left.\mathrm{1}\right){find}\:\int\:\:\:\:\frac{{dx}}{\left({x}+\mathrm{1}\right)^{\mathrm{3}} \left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{\left({x}+\mathrm{1}\right)^{\mathrm{3}} \left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} } \\ $$

Question Number 81836    Answers: 0   Comments: 0

Question Number 81835    Answers: 0   Comments: 1

Question Number 81829    Answers: 1   Comments: 2

Question Number 81828    Answers: 0   Comments: 0

Question Number 81824    Answers: 1   Comments: 0

Question Number 81821    Answers: 1   Comments: 0

Question Number 81804    Answers: 2   Comments: 1

Question Number 81801    Answers: 1   Comments: 1

Question Number 81797    Answers: 0   Comments: 1

Question Number 81794    Answers: 1   Comments: 2

Question Number 81786    Answers: 0   Comments: 5

Question Number 81913    Answers: 0   Comments: 1

Question Number 81771    Answers: 1   Comments: 3

Question Number 81769    Answers: 0   Comments: 2

Question Number 81768    Answers: 1   Comments: 4

Question Number 81763    Answers: 0   Comments: 2

Q. Find the minimum value of 3cosx + 4sinx + 8.

$${Q}.\:{Find}\:{the}\:{minimum}\:{value}\:{of}\: \\ $$$$\mathrm{3}{cosx}\:+\:\mathrm{4}{sinx}\:+\:\mathrm{8}. \\ $$

Question Number 81760    Answers: 0   Comments: 2

prove sin a+sin b+sin c =? 4cos ((a/2))cos ((b/2))cos ((c/2))

$${prove}\: \\ $$$$\mathrm{sin}\:{a}+\mathrm{sin}\:{b}+\mathrm{sin}\:{c}\:=? \\ $$$$\mathrm{4cos}\:\left(\frac{{a}}{\mathrm{2}}\right)\mathrm{cos}\:\left(\frac{{b}}{\mathrm{2}}\right)\mathrm{cos}\:\left(\frac{{c}}{\mathrm{2}}\right) \\ $$

Question Number 81759    Answers: 0   Comments: 1

  Pg 1319      Pg 1320      Pg 1321      Pg 1322      Pg 1323      Pg 1324      Pg 1325      Pg 1326      Pg 1327      Pg 1328   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com