Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1324
Question Number 78083 Answers: 1 Comments: 5
Question Number 78075 Answers: 0 Comments: 5
$${expressing}\:\:{P}\left({x}\right)\:=\:\frac{{x}^{\mathrm{2}} \:+\:{x}}{\left({x}−\mathrm{3}\right)\left({x}^{\mathrm{2}} −\mathrm{2}\right)}\:{in}\:{partial}\:{fractions}\:{gives} \\ $$$${A}.\:\:\frac{{A}}{\left({x}−\mathrm{3}\right)}\:+\:\frac{{Bx}\:+\:{C}}{\left({x}^{\mathrm{2}} −\mathrm{2}\right)}\: \\ $$$${B}.\:\:\frac{{A}}{{x}−\mathrm{3}}\:+\:\frac{{B}}{{x}−\mathrm{2}}\:+\:\frac{{C}}{{x}+\mathrm{2}} \\ $$$${C}.\:\frac{{A}}{{x}−\mathrm{3}}\:+\:\frac{{B}}{{x}−\sqrt{\mathrm{2}}}\:+\:\frac{{C}}{{x}\:+\:\sqrt{\mathrm{2}}} \\ $$$${D}.\:\frac{{Ax}\:+\:{B}}{{x}−\mathrm{3}}\:+\:\frac{{C}}{{x}^{\mathrm{2}} −\mathrm{2}} \\ $$
Question Number 78074 Answers: 2 Comments: 0
$${evaluate}\:\int_{\mathrm{1}} ^{\mathrm{4}} \mathrm{sinh}\:^{−\mathrm{1}} {x}\:{dx}\:\:{and}\:\underset{\mathrm{1}} {\overset{\frac{\mathrm{1}}{\mathrm{2}}} {\int}}\mathrm{tanh}\:^{−\mathrm{1}} {x}\:{dx} \\ $$
Question Number 78073 Answers: 0 Comments: 1
$${anyone}\:{have}\:{Lambert}\:{W}\:{function} \\ $$$${formula}.\:{please}\:{post}\:{in}\:{forum} \\ $$
Question Number 78060 Answers: 2 Comments: 1
Question Number 78056 Answers: 1 Comments: 0
Question Number 78049 Answers: 2 Comments: 1
Question Number 78046 Answers: 1 Comments: 0
$${minimum}\:{of}\: \\ $$$${function}\:{y}\:=\:\sqrt{{x}^{\mathrm{2}} +{e}^{\mathrm{2}{x}} }\:\:{is} \\ $$
Question Number 78042 Answers: 1 Comments: 0
Question Number 78040 Answers: 1 Comments: 4
Question Number 78037 Answers: 0 Comments: 11
Question Number 78021 Answers: 0 Comments: 7
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\left[\underset{\frac{\pi}{\mathrm{3}}} {\int}^{{x}^{\mathrm{2}} +\frac{\pi}{\mathrm{3}}} \frac{\mathrm{cos}\:{x}}{{x}}\:{dx}\:\right]\:= \\ $$
Question Number 78013 Answers: 1 Comments: 0
$${if}\::\:\mathrm{30}{x}^{\mathrm{4}} −\frac{\mathrm{15}}{\mathrm{8}}=\:\underset{{t}} {\overset{{x}} {\int}}\:{g}\left({u}\right){du} \\ $$$${find}\:{g}\left({t}\right). \\ $$
Question Number 77995 Answers: 0 Comments: 3
$${calculate}\:\int_{−\infty} ^{+\infty} \:\frac{{arctan}\left(\mathrm{2}{x}+\mathrm{1}\right)}{\left({x}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{2}} }{dx} \\ $$
Question Number 77991 Answers: 2 Comments: 0
$${If}\:\:{P}_{\mathrm{1}} \:\:{P}_{\mathrm{2}} \:\:{P}_{\mathrm{3}} \:\:{will}\:{be}\:{taken} \\ $$$${as}\:{point}\:{in}\:{an}\:{Argand} \\ $$$${diagram}\:{representing} \\ $$$${complex}\:{number} \\ $$$${Z}_{\mathrm{1}} ,{Z}_{\mathrm{2}} ,{Z}_{\mathrm{3}} \:\:{and}\:{point} \\ $$$${P}_{\mathrm{1}\:} ,{P}_{\mathrm{2}} ,{P}_{\mathrm{3}} \:{is}\:{an}\:{equalateral} \\ $$$${triangle}.{show}\:{that} \\ $$$$\left({Z}_{\mathrm{2}} −{Z}_{\mathrm{3}} \right)^{\mathrm{2}} +\left({Z}_{\mathrm{3}} −{Z}_{\mathrm{1}} \right)^{\mathrm{2}} +\left({Z}_{\mathrm{1}} −{Z}_{\mathrm{2}} \right)^{\mathrm{2}} =\mathrm{0} \\ $$
Question Number 77990 Answers: 2 Comments: 0
$${Find}\:{the}\:{equation}\:{to}\:{the} \\ $$$${two}\:{circles}\:{each}\:{of} \\ $$$${which}\:{touch}\:{the}\:{three}\:{circle} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{4}{a}^{\mathrm{2}} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{2}{ax}=\mathrm{0} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{ax}=\mathrm{0} \\ $$$$ \\ $$
Question Number 77988 Answers: 1 Comments: 1
Question Number 77987 Answers: 0 Comments: 0
Question Number 77966 Answers: 1 Comments: 0
Question Number 77965 Answers: 1 Comments: 9
$${solve}\:{for}\:{x},{y},{z}\:\in\mathbb{N} \\ $$$$\mathrm{35}{x}+\mathrm{21}{y}+\mathrm{60}{z}=\mathrm{665} \\ $$
Question Number 77962 Answers: 1 Comments: 2
$$\int\frac{{dx}}{\mathrm{1}+\left({tan}\left({x}\right)\right)^{\sqrt{\mathrm{2}}} }\:{dx} \\ $$
Question Number 77960 Answers: 0 Comments: 3
$$\int\:\frac{\mathrm{2}{x}^{\mathrm{3}} −\mathrm{1}}{{x}^{\mathrm{4}} +{x}}\:{dx}? \\ $$
Question Number 77959 Answers: 2 Comments: 0
$${solve}\:\mathrm{tan}\:\left(\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }\right)>\mathrm{1}\: \\ $$
Question Number 77953 Answers: 2 Comments: 0
$$\mathrm{Given}\:\mathrm{that}\:\underset{\mathrm{r}=\mathrm{0}} {\overset{\mathrm{4}} {\sum}}\mathrm{6r}\:=\mathrm{2}\underset{\mathrm{r}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\mathrm{5r},\:\mathrm{work}\:\mathrm{out}\:\mathrm{the}\:\mathrm{value} \\ $$$$\mathrm{of}\:\mathrm{n}. \\ $$
Question Number 78012 Answers: 1 Comments: 3
$$\boldsymbol{{prove}}\:\boldsymbol{{that}} \\ $$$$\underset{\boldsymbol{{x}}\rightarrow\mathrm{1}} {\boldsymbol{{lim}}}\frac{\boldsymbol{{sin}}\left(\boldsymbol{\pi{cos}\pi{x}}\right)}{\left(\boldsymbol{{x}}−\mathrm{1}\right)^{\mathrm{2}} }\:=\:−\:\frac{\boldsymbol{\pi}^{\mathrm{3}} }{\mathrm{2}} \\ $$
Question Number 77918 Answers: 1 Comments: 1
$$\int\underset{\mathrm{0}} {\overset{\pi} {\:}}\:{e}^{−\mathrm{2}{x}} \:\mathrm{sin}\:{x}\:{dx}\:?\: \\ $$
Pg 1319 Pg 1320 Pg 1321 Pg 1322 Pg 1323 Pg 1324 Pg 1325 Pg 1326 Pg 1327 Pg 1328
Terms of Service
Privacy Policy
Contact: info@tinkutara.com