Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1322
Question Number 74138 Answers: 0 Comments: 2
Question Number 74137 Answers: 0 Comments: 2
Question Number 74131 Answers: 0 Comments: 2
$${Can}\:{anyone}\:{share}\:{the}\:{solutions}\:\left({pdf}\right) \\ $$$${of}\:{the}\:{book}\:{Advanced}\:{engineering} \\ $$$${Mathematics}\:{by}\:{Erwin}\:{kreyzig}\:\mathrm{8}{th} \\ $$$${edition}\:? \\ $$$$ \\ $$
Question Number 74130 Answers: 1 Comments: 0
$$\left.\mathrm{h}\left.\mathrm{e}\left.\mathrm{l}\left.\mathrm{l}\left.\mathrm{o}\right]\:\mathrm{help}\:\mathrm{me}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{it}\:\mathrm{in}\:\right]−\Pi;\Pi\right]×\right]−\Pi;\Pi\right]\:\mathrm{please} \\ $$$$\begin{cases}{\mathrm{x}−\mathrm{y}=\frac{\Pi}{\mathrm{6}}}\\{\mathrm{cosx}−\sqrt{\mathrm{3}}\mathrm{cosy}=−\frac{\mathrm{1}}{\mathrm{2}}}\end{cases} \\ $$
Question Number 74129 Answers: 1 Comments: 0
$$\mathrm{2}\boldsymbol{{C}}_{\mathrm{4}} ^{\boldsymbol{{n}}} \:=\:\mathrm{35}\boldsymbol{{C}}_{\mathrm{3}} ^{\frac{\boldsymbol{{n}}}{\mathrm{2}}} \: \\ $$$$\Rightarrow\:\boldsymbol{{n}}\:=\:? \\ $$
Question Number 74123 Answers: 1 Comments: 2
Question Number 74121 Answers: 0 Comments: 1
$$\mathrm{Factor}\:\mathrm{the}\:\mathrm{polynomial} \\ $$$$\left(\frac{{c}}{\mathrm{2}}\right){x}^{\mathrm{2}} +\left({b}−\frac{\mathrm{3}{c}}{\mathrm{2}}\right){x}+\left({c}−{b}+{a}\right) \\ $$
Question Number 74117 Answers: 0 Comments: 1
$${Find}\:{the}\:{volume}\:{of}\:{the}\:{solid}\:{that}\:{lies} \\ $$$${within}\:{the}\:{sphere}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} =\mathrm{16},\:{above} \\ $$$${the}\:{x}-{y}\:{plane}\:{and}\:{below}\:{the}\:{cone} \\ $$$${z}=\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} } \\ $$
Question Number 74112 Answers: 1 Comments: 0
Question Number 74111 Answers: 1 Comments: 1
Question Number 74109 Answers: 1 Comments: 3
Question Number 74087 Answers: 0 Comments: 15
$$\left({Q}\mathrm{73828}\right) \\ $$$${prove}\:{that}\:{no}\:{cube}\:{exists}\:{whose}\:{corners} \\ $$$${are}\:{located}\:{on}\:{all}\:{faces}\:{of}\:{an}\:{other}\:{cube}. \\ $$
Question Number 74075 Answers: 0 Comments: 1
Question Number 74068 Answers: 1 Comments: 4
Question Number 74063 Answers: 0 Comments: 0
Question Number 74041 Answers: 0 Comments: 3
Question Number 74040 Answers: 1 Comments: 1
$${Find}\:{orthogonal}\:{trajectories}\:{of}\:{the} \\ $$$${curves}:\:\left({x}−{c}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} ={c}^{\mathrm{2}} . \\ $$
Question Number 74037 Answers: 1 Comments: 0
$$\int_{\mathrm{0}^{} } ^{\Pi/\mathrm{2}} {x}\mathrm{cos}^{{n}} {xdx}\:\:\:{by}\:{reduction}\:{formula} \\ $$
Question Number 74026 Answers: 1 Comments: 5
$${U}_{{n}} {is}\:{a}\:{sequence}\:{wich}\:{verfy}\: \\ $$$$\forall{n}\:\in{N}\:\:\:\:\:\:\:\:\mathrm{2}^{{n}} \left(\:{U}_{{n}} +{U}_{{n}+\mathrm{1}} \right)=\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{U}_{{n}} \:{interms}\:{of}\:{n} \\ $$$$\left.\mathrm{2}\right)\:{is}\:\left({U}_{{n}} \right)\:{cojverhent}\:? \\ $$
Question Number 74024 Answers: 1 Comments: 1
$$\begin{cases}{{h}^{\mathrm{2}} +{y}^{\mathrm{2}} +\left({k}−{z}\right)^{\mathrm{2}} ={s}^{\mathrm{2}} }\\{{a}^{\mathrm{2}} +\left({b}−{y}\right)^{\mathrm{2}} +{z}^{\mathrm{2}} ={s}^{\mathrm{2}} }\\{{ah}+{y}\left({y}−{b}\right)+{z}\left({z}−{k}\right)=\mathrm{0}}\\{\frac{{h}+{a}}{\mathrm{2}}+{yz}−\left({b}−{y}\right)\left({k}−{z}\right)=\mathrm{1}}\\{{b}+{a}\left({k}−{z}\right)+{hz}=\mathrm{1}}\\{{k}+{h}\left({b}−{y}\right)+{ay}=\mathrm{1}}\end{cases} \\ $$$${Find}\:\:{s}_{{min}} \:{or}\:{at}\:{least}\:{express} \\ $$$$\:{s}={f}\left({y}\right)\:{or}\:{g}\left({z}\right). \\ $$
Question Number 74042 Answers: 0 Comments: 3
Question Number 74019 Answers: 1 Comments: 3
$${let}\:{the}\:{matrix}\:\:{A}\:=\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\:\:\:\:\mathrm{2}}\\{\mathrm{0}\:\:\:\:\:\:\:\:\:−\mathrm{3}}\end{pmatrix} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{A}^{{n}} \:\:{for}\:{n}\:{integr} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{e}^{{A}} \:\:{and}\:{e}^{−{A}} . \\ $$
Question Number 74017 Answers: 0 Comments: 3
$${let}\:{f}\left({x}\right)=\int_{{x}} ^{{x}^{\mathrm{2}} +\mathrm{3}} \:{e}^{−{xt}} \:{ln}\left(\mathrm{1}+{e}^{−{xt}} \right){dt}\:\:\:\:{with}\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){find}\:\:{lim}_{{x}\rightarrow+\infty} {f}\left({x}\right). \\ $$
Question Number 74016 Answers: 1 Comments: 5
$${let}\:{g}\left({x}\right)\:=\frac{\mathrm{1}}{{x}}\int_{{x}} ^{\mathrm{2}{x}+\mathrm{1}} \:\:{arctan}\left({xt}\right){dt} \\ $$$${find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:{g}\left({x}\right)\:\:{and}\:{lim}_{{x}\rightarrow+\infty} {g}\left({x}\right). \\ $$
Question Number 74015 Answers: 0 Comments: 1
$${let}\:{f}\left({x}\right)\:=\int_{{x}} ^{{x}^{\mathrm{2}} } \:\:\:\frac{{sh}\left({xt}\right)}{{sin}\left({xt}\right)}{dt} \\ $$$${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} {f}\left({x}\right) \\ $$
Question Number 74014 Answers: 0 Comments: 1
$$\:\: \\ $$$$\:\:{let}\:{W}\left({x}\right)=\sum_{\mathrm{1}\leqslant{i}<{j}\leqslant{n}} \:\:\frac{{x}^{{i}+{j}} }{{ij}} \\ $$$${calculate}\:{W}\:^{'} \left({x}\right). \\ $$
Pg 1317 Pg 1318 Pg 1319 Pg 1320 Pg 1321 Pg 1322 Pg 1323 Pg 1324 Pg 1325 Pg 1326
Terms of Service
Privacy Policy
Contact: info@tinkutara.com