Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1322

Question Number 74138    Answers: 0   Comments: 2

Question Number 74137    Answers: 0   Comments: 2

Question Number 74131    Answers: 0   Comments: 2

Can anyone share the solutions (pdf) of the book Advanced engineering Mathematics by Erwin kreyzig 8th edition ?

$${Can}\:{anyone}\:{share}\:{the}\:{solutions}\:\left({pdf}\right) \\ $$$${of}\:{the}\:{book}\:{Advanced}\:{engineering} \\ $$$${Mathematics}\:{by}\:{Erwin}\:{kreyzig}\:\mathrm{8}{th} \\ $$$${edition}\:? \\ $$$$ \\ $$

Question Number 74130    Answers: 1   Comments: 0

hello] help me to solve it in ]−Π;Π]×]−Π;Π] please { ((x−y=(Π/6))),((cosx−(√3)cosy=−(1/2))) :}

$$\left.\mathrm{h}\left.\mathrm{e}\left.\mathrm{l}\left.\mathrm{l}\left.\mathrm{o}\right]\:\mathrm{help}\:\mathrm{me}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{it}\:\mathrm{in}\:\right]−\Pi;\Pi\right]×\right]−\Pi;\Pi\right]\:\mathrm{please} \\ $$$$\begin{cases}{\mathrm{x}−\mathrm{y}=\frac{\Pi}{\mathrm{6}}}\\{\mathrm{cosx}−\sqrt{\mathrm{3}}\mathrm{cosy}=−\frac{\mathrm{1}}{\mathrm{2}}}\end{cases} \\ $$

Question Number 74129    Answers: 1   Comments: 0

2C_4 ^n = 35C_3 ^(n/2) ⇒ n = ?

$$\mathrm{2}\boldsymbol{{C}}_{\mathrm{4}} ^{\boldsymbol{{n}}} \:=\:\mathrm{35}\boldsymbol{{C}}_{\mathrm{3}} ^{\frac{\boldsymbol{{n}}}{\mathrm{2}}} \: \\ $$$$\Rightarrow\:\boldsymbol{{n}}\:=\:? \\ $$

Question Number 74123    Answers: 1   Comments: 2

Question Number 74121    Answers: 0   Comments: 1

Factor the polynomial ((c/2))x^2 +(b−((3c)/2))x+(c−b+a)

$$\mathrm{Factor}\:\mathrm{the}\:\mathrm{polynomial} \\ $$$$\left(\frac{{c}}{\mathrm{2}}\right){x}^{\mathrm{2}} +\left({b}−\frac{\mathrm{3}{c}}{\mathrm{2}}\right){x}+\left({c}−{b}+{a}\right) \\ $$

Question Number 74117    Answers: 0   Comments: 1

Find the volume of the solid that lies within the sphere x^2 +y^2 +z^2 =16, above the x-y plane and below the cone z=(√(x^2 +y^2 ))

$${Find}\:{the}\:{volume}\:{of}\:{the}\:{solid}\:{that}\:{lies} \\ $$$${within}\:{the}\:{sphere}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} =\mathrm{16},\:{above} \\ $$$${the}\:{x}-{y}\:{plane}\:{and}\:{below}\:{the}\:{cone} \\ $$$${z}=\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} } \\ $$

Question Number 74112    Answers: 1   Comments: 0

Question Number 74111    Answers: 1   Comments: 1

Question Number 74109    Answers: 1   Comments: 3

Question Number 74087    Answers: 0   Comments: 15

(Q73828) prove that no cube exists whose corners are located on all faces of an other cube.

$$\left({Q}\mathrm{73828}\right) \\ $$$${prove}\:{that}\:{no}\:{cube}\:{exists}\:{whose}\:{corners} \\ $$$${are}\:{located}\:{on}\:{all}\:{faces}\:{of}\:{an}\:{other}\:{cube}. \\ $$

Question Number 74075    Answers: 0   Comments: 1

Question Number 74068    Answers: 1   Comments: 4

Question Number 74063    Answers: 0   Comments: 0

Question Number 74041    Answers: 0   Comments: 3

Question Number 74040    Answers: 1   Comments: 1

Find orthogonal trajectories of the curves: (x−c)^2 +y^2 =c^2 .

$${Find}\:{orthogonal}\:{trajectories}\:{of}\:{the} \\ $$$${curves}:\:\left({x}−{c}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} ={c}^{\mathrm{2}} . \\ $$

Question Number 74037    Answers: 1   Comments: 0

∫_0^ ^(Π/2) xcos^n xdx by reduction formula

$$\int_{\mathrm{0}^{} } ^{\Pi/\mathrm{2}} {x}\mathrm{cos}^{{n}} {xdx}\:\:\:{by}\:{reduction}\:{formula} \\ $$

Question Number 74026    Answers: 1   Comments: 5

U_n is a sequence wich verfy ∀n ∈N 2^n ( U_n +U_(n+1) )=1 1) calculate U_n interms of n 2) is (U_n ) cojverhent ?

$${U}_{{n}} {is}\:{a}\:{sequence}\:{wich}\:{verfy}\: \\ $$$$\forall{n}\:\in{N}\:\:\:\:\:\:\:\:\mathrm{2}^{{n}} \left(\:{U}_{{n}} +{U}_{{n}+\mathrm{1}} \right)=\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{U}_{{n}} \:{interms}\:{of}\:{n} \\ $$$$\left.\mathrm{2}\right)\:{is}\:\left({U}_{{n}} \right)\:{cojverhent}\:? \\ $$

Question Number 74024    Answers: 1   Comments: 1

{ ((h^2 +y^2 +(k−z)^2 =s^2 )),((a^2 +(b−y)^2 +z^2 =s^2 )),((ah+y(y−b)+z(z−k)=0)),((((h+a)/2)+yz−(b−y)(k−z)=1)),((b+a(k−z)+hz=1)),((k+h(b−y)+ay=1)) :} Find s_(min) or at least express s=f(y) or g(z).

$$\begin{cases}{{h}^{\mathrm{2}} +{y}^{\mathrm{2}} +\left({k}−{z}\right)^{\mathrm{2}} ={s}^{\mathrm{2}} }\\{{a}^{\mathrm{2}} +\left({b}−{y}\right)^{\mathrm{2}} +{z}^{\mathrm{2}} ={s}^{\mathrm{2}} }\\{{ah}+{y}\left({y}−{b}\right)+{z}\left({z}−{k}\right)=\mathrm{0}}\\{\frac{{h}+{a}}{\mathrm{2}}+{yz}−\left({b}−{y}\right)\left({k}−{z}\right)=\mathrm{1}}\\{{b}+{a}\left({k}−{z}\right)+{hz}=\mathrm{1}}\\{{k}+{h}\left({b}−{y}\right)+{ay}=\mathrm{1}}\end{cases} \\ $$$${Find}\:\:{s}_{{min}} \:{or}\:{at}\:{least}\:{express} \\ $$$$\:{s}={f}\left({y}\right)\:{or}\:{g}\left({z}\right). \\ $$

Question Number 74042    Answers: 0   Comments: 3

Question Number 74019    Answers: 1   Comments: 3

let the matrix A = (((1 2)),((0 −3)) ) 1) calculate A^n for n integr 2) find e^A and e^(−A) .

$${let}\:{the}\:{matrix}\:\:{A}\:=\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\:\:\:\:\mathrm{2}}\\{\mathrm{0}\:\:\:\:\:\:\:\:\:−\mathrm{3}}\end{pmatrix} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{A}^{{n}} \:\:{for}\:{n}\:{integr} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{e}^{{A}} \:\:{and}\:{e}^{−{A}} . \\ $$

Question Number 74017    Answers: 0   Comments: 3

let f(x)=∫_x ^(x^2 +3) e^(−xt) ln(1+e^(−xt) )dt with x>0 1) calculate f(x) 2)find lim_(x→+∞) f(x).

$${let}\:{f}\left({x}\right)=\int_{{x}} ^{{x}^{\mathrm{2}} +\mathrm{3}} \:{e}^{−{xt}} \:{ln}\left(\mathrm{1}+{e}^{−{xt}} \right){dt}\:\:\:\:{with}\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){find}\:\:{lim}_{{x}\rightarrow+\infty} {f}\left({x}\right). \\ $$

Question Number 74016    Answers: 1   Comments: 5

let g(x) =(1/x)∫_x ^(2x+1) arctan(xt)dt find lim_(x→0) g(x) and lim_(x→+∞) g(x).

$${let}\:{g}\left({x}\right)\:=\frac{\mathrm{1}}{{x}}\int_{{x}} ^{\mathrm{2}{x}+\mathrm{1}} \:\:{arctan}\left({xt}\right){dt} \\ $$$${find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:{g}\left({x}\right)\:\:{and}\:{lim}_{{x}\rightarrow+\infty} {g}\left({x}\right). \\ $$

Question Number 74015    Answers: 0   Comments: 1

let f(x) =∫_x ^x^2 ((sh(xt))/(sin(xt)))dt calculate lim_(x→0) f(x)

$${let}\:{f}\left({x}\right)\:=\int_{{x}} ^{{x}^{\mathrm{2}} } \:\:\:\frac{{sh}\left({xt}\right)}{{sin}\left({xt}\right)}{dt} \\ $$$${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} {f}\left({x}\right) \\ $$

Question Number 74014    Answers: 0   Comments: 1

let W(x)=Σ_(1≤i<j≤n) (x^(i+j) /(ij)) calculate W^′ (x).

$$\:\: \\ $$$$\:\:{let}\:{W}\left({x}\right)=\sum_{\mathrm{1}\leqslant{i}<{j}\leqslant{n}} \:\:\frac{{x}^{{i}+{j}} }{{ij}} \\ $$$${calculate}\:{W}\:^{'} \left({x}\right). \\ $$

  Pg 1317      Pg 1318      Pg 1319      Pg 1320      Pg 1321      Pg 1322      Pg 1323      Pg 1324      Pg 1325      Pg 1326   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com