Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1322
Question Number 80159 Answers: 1 Comments: 4
$$\boldsymbol{{IF}}\:\:\boldsymbol{{THE}}\:\:\:\boldsymbol{{SUM}}\:\:\:\boldsymbol{{OF}}\:\:\:\boldsymbol{{p}}\:\:\boldsymbol{{TERMS}} \\ $$$$\boldsymbol{{OF}}\:\:\boldsymbol{{AN}}\:\:\:\:\boldsymbol{{A}}.\boldsymbol{{P}}.\:\:\:\boldsymbol{{IS}}\:\:\:\boldsymbol{{EQUAL}}\:\:\boldsymbol{{TO}} \\ $$$$\boldsymbol{{SUM}}\:\:\boldsymbol{{OF}}\:\:\:\boldsymbol{{ITS}}\:\:\:\boldsymbol{{q}}\:\:\:\boldsymbol{{TERMS}}.\:\: \\ $$$$\boldsymbol{{PROVE}}\:\:\boldsymbol{{THAT}}\:\:\boldsymbol{{THE}}\:\:\boldsymbol{{SUM}}\:\:\boldsymbol{{OF}} \\ $$$$\left(\boldsymbol{{p}}+\boldsymbol{{q}}\right)\:\:\boldsymbol{{TERMS}}\:\:\boldsymbol{{OF}}\:\:\:\boldsymbol{{IT}}\:\:\:\boldsymbol{{IS}}\:\:\: \\ $$$$\boldsymbol{{EQUAL}}\:\:\boldsymbol{{TO}}\:\:\mathrm{0}\left(\boldsymbol{{ZERO}}\right). \\ $$
Question Number 80146 Answers: 1 Comments: 0
$${Two}\:{system}\:{of}\:{rectangular}\:{axes}\:{have} \\ $$$${the}\:{same}\:{origin}.\:{If}\:{a}\:{plane}\:{cuts}\:{them} \\ $$$${at}\:{distance}\:{a},\:{b},\:{c}\:{and}\:{p},\:{q},\:{r} \\ $$$${respectively},\:{then}\:{prove}\:{with}\:{the}\:{help} \\ $$$${of}\:{an}\:{appropriate}\:{diagram}\:{that}\:: \\ $$$$\frac{\mathrm{1}}{{a}^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{{b}^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{{c}^{\mathrm{2}} }\:=\:\frac{\mathrm{1}}{{p}^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{{q}^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{{r}^{\mathrm{2}} } \\ $$
Question Number 80139 Answers: 1 Comments: 6
Question Number 80142 Answers: 2 Comments: 0
$$\mathrm{a}.\:\:\:\underset{\boldsymbol{\mathrm{k}}=\mathrm{1}} {\overset{\infty} {\sum}}\:\:\left(\frac{\boldsymbol{\mathrm{k}}^{\mathrm{3}} }{\mathrm{2}^{\boldsymbol{\mathrm{k}}} }\right)=? \\ $$$$\boldsymbol{\mathrm{b}}.\:\:\:\:\underset{\boldsymbol{\mathrm{k}}=\mathrm{1}} {\overset{\infty} {\sum}}\:\:\left(\frac{\boldsymbol{\mathrm{k}}^{\mathrm{3}} +\boldsymbol{\mathrm{k}}^{\mathrm{2}} +\boldsymbol{\mathrm{k}}+\mathrm{1}}{\mathrm{7}^{\boldsymbol{\mathrm{k}}} }\right)=? \\ $$
Question Number 80131 Answers: 0 Comments: 2
Question Number 80145 Answers: 1 Comments: 5
$$\begin{cases}{\frac{\boldsymbol{\mathrm{x}}}{\boldsymbol{\mathrm{a}}}+\frac{\boldsymbol{\mathrm{y}}}{\boldsymbol{\mathrm{b}}}=\boldsymbol{\mathrm{a}}^{\mathrm{2}} +\boldsymbol{\mathrm{b}}^{\mathrm{2}} }\\{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[\boldsymbol{\mathrm{a}},\boldsymbol{\mathrm{b}}\in\boldsymbol{\mathrm{R}}\right]}\\{\boldsymbol{\mathrm{ab}}\left(\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\boldsymbol{\mathrm{y}}^{\mathrm{2}} \right)=\boldsymbol{\mathrm{xy}}\left(\boldsymbol{\mathrm{a}}^{\mathrm{2}} −\boldsymbol{\mathrm{b}}^{\mathrm{2}} \right)}\end{cases} \\ $$
Question Number 80119 Answers: 2 Comments: 0
Question Number 80144 Answers: 0 Comments: 1
$$\boldsymbol{\mathrm{solve}}\:\boldsymbol{\mathrm{for}}\:\boldsymbol{\mathrm{x}}: \\ $$$$\frac{\sqrt{\boldsymbol{\mathrm{x}}}+\mathrm{1}}{\sqrt{\boldsymbol{\mathrm{x}}+\mathrm{1}}}+\boldsymbol{\mathrm{ax}}^{\mathrm{2}} =\boldsymbol{\mathrm{x}}\left(\boldsymbol{\mathrm{a}}^{\mathrm{2}} +\mathrm{1}\right)\:\:\:\:\:\:\left[\boldsymbol{\mathrm{a}}\in\boldsymbol{\mathrm{R}}\right] \\ $$
Question Number 80116 Answers: 1 Comments: 1
$${Find} \\ $$$${S}_{{m}} =\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\underset{{k}=\mathrm{1}} {\overset{{m}} {\prod}}\left({n}+{k}\right)}=? \\ $$$$\left({m}\geqslant\mathrm{2}\right) \\ $$
Question Number 80113 Answers: 0 Comments: 1
$${how}\:{do}\:{you}\:{simply} \\ $$$$\mathrm{sin}\:\left(\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{3}{x}\right)+\mathrm{cos}^{−\mathrm{1}} \left({x}\right)\right)\:? \\ $$
Question Number 80102 Answers: 0 Comments: 0
Question Number 80093 Answers: 3 Comments: 0
$$\mathrm{Solve}\:\mathrm{for}\:\:\mathrm{x}\:\mathrm{and}\:\mathrm{y} \\ $$$$\:\:\:\:\:\mathrm{x}^{\sqrt{\mathrm{y}}} \:\:\:=\:\:\mathrm{64} \\ $$$$\:\:\:\:\:\mathrm{y}^{\sqrt{\mathrm{x}}} \:\:\:=\:\mathrm{81} \\ $$
Question Number 80088 Answers: 0 Comments: 0
$$\:{When}\:\:{the}\:\:{father}\:\:{was}\:{son}'{s}\:\:{age},\:\:{the}\:\:{son} \\ $$$$\:\:{was}\:\:{ten}\:\:{years}\:\:{old};\:\:{when}\:\:{the}\:\:{son}\:\:{will}\:\:{be}\:\:{father}'{s}\:\:{age}, \\ $$$$\:\:{the}\:\:{father}\:\:{will}\:\:{be}\:\:{seventy}. \\ $$$$\:\:{What}\:\:{are}\:\:{their}\:\:{ages}\:\:? \\ $$
Question Number 80084 Answers: 0 Comments: 3
$$\:\:−\mathrm{1}=\left(−\mathrm{1}\right)^{\mathrm{1}} =\left(−\mathrm{1}\right)^{\frac{\mathrm{2}}{\mathrm{2}}} =\left(\left(−\mathrm{1}\right)^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} =\left(\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} = \\ $$$$=\sqrt{\mathrm{1}}=\mathrm{1}\:\: \\ $$$$\mathrm{what}\:\mathrm{do}\:\mathrm{you}\:\mathrm{think}\:\mathrm{about}\:\mathrm{this}? \\ $$
Question Number 80068 Answers: 2 Comments: 3
Question Number 80065 Answers: 0 Comments: 0
Question Number 80064 Answers: 1 Comments: 6
$$\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\left[\sqrt{\mathrm{1}−{xe}^{{x}} \:}\right] \\ $$
Question Number 80057 Answers: 1 Comments: 2
Question Number 80053 Answers: 0 Comments: 4
$${Find}\:{integer}\:{x},\:{y}\:{such}\:{that} \\ $$$$\mathrm{2}^{{x}} −{y}^{\mathrm{2}} =\mathrm{615} \\ $$
Question Number 80052 Answers: 0 Comments: 0
$$\int\:\mathrm{e}^{\mathrm{sin}\:\mathrm{2x}} .\mathrm{cos}\:\mathrm{x}\:\mathrm{dx}\:= \\ $$$$ \\ $$
Question Number 80108 Answers: 1 Comments: 3
$${a},{b},{c}\:\in\mathbb{R} \\ $$$$\frac{{b}+{c}+{d}}{{a}}=\frac{{a}+{c}+{d}}{{b}}=\frac{{a}+{b}+{c}}{{d}}=\frac{{a}+{b}+{d}}{{c}}={r} \\ $$$${what}\:{is}\:{r}? \\ $$
Question Number 80039 Answers: 1 Comments: 6
$${prove}\:{that} \\ $$$$\left(\mathrm{1}+{x}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)\geqslant\mathrm{4} \\ $$
Question Number 80037 Answers: 0 Comments: 0
$$\mathrm{A}\:\mathrm{matrix}\:{A}=\begin{bmatrix}{{a}_{{ij}} }\end{bmatrix}\:\mathrm{is}\:\mathrm{an}\:\mathrm{upper}\:\mathrm{triangular} \\ $$$$\mathrm{matrix}\:\mathrm{if} \\ $$
Question Number 80036 Answers: 1 Comments: 3
$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)\left({n}+\mathrm{3}\right)}=\: \\ $$
Question Number 80027 Answers: 0 Comments: 4
$${find}\:{minimum} \\ $$$${value}\:{of}\:\sqrt{{x}^{\mathrm{2}} +\mathrm{4}}+\sqrt{{x}^{\mathrm{2}} −\mathrm{24}{x}+\mathrm{153}} \\ $$$${for}\:{x}\geqslant\mathrm{0}\:{in}\:\mathbb{R} \\ $$
Question Number 80015 Answers: 2 Comments: 2
Pg 1317 Pg 1318 Pg 1319 Pg 1320 Pg 1321 Pg 1322 Pg 1323 Pg 1324 Pg 1325 Pg 1326
Terms of Service
Privacy Policy
Contact: info@tinkutara.com