Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1321
Question Number 82041 Answers: 1 Comments: 4
$${show}\:{that} \\ $$$$\pi^{{ie}} +\frac{\mathrm{1}}{\mathrm{2}}=\mathrm{0} \\ $$
Question Number 82034 Answers: 0 Comments: 1
$$\boldsymbol{{P}}{rove}\:\:{by}\:\:{maths}\:\:{induction}\:\:{tbat} \\ $$$$\boldsymbol{{n}}^{\mathrm{5}} \:−\:\boldsymbol{{n}}^{\mathrm{3}} \:\:\boldsymbol{{is}}\:\boldsymbol{{divisible}}\:\boldsymbol{{by}}\:\mathrm{24}. \\ $$
Question Number 82026 Answers: 1 Comments: 0
$$\sqrt{{x}}+{y}\:=\:\mathrm{7} \\ $$$${x}+\sqrt{{y}\:}\:=\mathrm{11}\: \\ $$$${find}\:{x}\:{and}\:{y} \\ $$$$ \\ $$
Question Number 82022 Answers: 0 Comments: 0
Question Number 82020 Answers: 0 Comments: 2
Question Number 82019 Answers: 1 Comments: 0
Question Number 82018 Answers: 2 Comments: 2
$$\mathrm{Differentiate}\:\:\:\:\:\mathrm{y}\:\:=\:\:\mathrm{2}^{\mathrm{x}} \:\:\:\:\mathrm{from}\:\mathrm{the}\:\mathrm{first}\:\mathrm{principle}. \\ $$
Question Number 81996 Answers: 0 Comments: 0
$${calculate}\:{I}_{{n}} =\int\int_{\left[\frac{\mathrm{1}}{{n}},{n}\left[\right.\right.} \:\:{e}^{−{x}^{\mathrm{2}} −\mathrm{3}{y}^{\mathrm{2}} } {dxdy} \\ $$$${and}\:{find}\:{lim}_{{n}\rightarrow+\infty} \:\:{I}_{{n}} \\ $$$${conclude}\:{that}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{x}^{\mathrm{2}} } {dx}=\frac{\sqrt{\pi}}{\mathrm{2}} \\ $$
Question Number 81994 Answers: 0 Comments: 0
$${calculate}\:\int\int_{{W}} \left({x}+{y}\right){e}^{{x}−{y}} {dxdy} \\ $$$${with}\:{W}\:{is}\:{the}\:{triangle}\:{limited}\:{by} \\ $$$${o},{A}\left(\mathrm{1},\mathrm{0}\right){and}\:{B}\left(\mathrm{0},\mathrm{1}\right) \\ $$
Question Number 81993 Answers: 0 Comments: 0
$${calculate}\:\int\int_{{D}} {ln}\left(\mathrm{1}+{x}+{y}\right){dxdy} \\ $$$${with}\:{D}\:{is}\:{the}\:{triangle}\:{limited}\:{by} \\ $$$${points}\:\mathrm{0},{A}\left(\mathrm{1},\mathrm{0}\right)\:{and}\:{B}\left(\mathrm{0},\mathrm{1}\right) \\ $$
Question Number 81983 Answers: 0 Comments: 4
Question Number 81980 Answers: 1 Comments: 2
Question Number 82031 Answers: 1 Comments: 0
$${find}\:{x},{y} \\ $$$$\begin{cases}{\mathrm{5}\sqrt{\mathrm{2}{x}^{\mathrm{2}} −{y}^{\mathrm{4}} }\:=\mathrm{4}{x}−\mathrm{3}{y}}\\{\mathrm{4}\sqrt{\mathrm{2}{x}^{\mathrm{2}} −{y}^{\mathrm{4}} }\:=\mathrm{3}{x}−\mathrm{2}{y}}\end{cases} \\ $$
Question Number 82030 Answers: 1 Comments: 0
$${a}\:−\:{b}\:+\:{c}\:−\:{d}\:\:=\:\:\mathrm{2} \\ $$$${a}^{\mathrm{2}} \:−\:{b}^{\mathrm{2}} \:+\:{c}^{\mathrm{2}} \:−\:{d}^{\mathrm{2}} \:\:=\:\:\mathrm{6} \\ $$$${a}^{\mathrm{3}} \:−\:{b}^{\mathrm{3}} \:+\:{c}^{\mathrm{3}} \:−\:{d}^{\mathrm{3}} \:\:=\:\:\mathrm{20} \\ $$$${a}^{\mathrm{4}} \:−\:{b}^{\mathrm{4}} \:+\:{c}^{\mathrm{4}} \:−\:{d}^{\mathrm{4}} \:\:=\:\:\mathrm{66} \\ $$$${a}\:+\:{b}\:+\:{c}\:+\:{d}\:\:=\:\:? \\ $$
Question Number 81975 Answers: 2 Comments: 5
Question Number 81972 Answers: 1 Comments: 1
Question Number 81971 Answers: 1 Comments: 0
Question Number 81970 Answers: 0 Comments: 1
$${find}\:{the}\:{limit}\:{as}\:{n}\:−>\infty \\ $$$$ \\ $$$${lim}\left(\mathrm{2}−\:^{{n}} \sqrt{{x}}\right)^{{n}} \\ $$$$ \\ $$
Question Number 81968 Answers: 1 Comments: 1
Question Number 81966 Answers: 1 Comments: 0
$$\left(\frac{\mathrm{1}\:+\:{i}\sqrt{\mathrm{3}}}{\mathrm{2}}\:\right)^{\mathrm{2020}} \:+\:\:\left(\frac{\mathrm{1}\:−\:{i}\sqrt{\mathrm{3}}}{\mathrm{2}}\:\right)^{\mathrm{2020}} \:\:=\:\:\:{A} \\ $$$${A}^{\mathrm{4}} \:\:=\:\:? \\ $$
Question Number 81963 Answers: 1 Comments: 2
$${if}\:\mathrm{tan}\:\left({x}\right)+\mathrm{sec}\:\left({x}\right)\:=\:\frac{\mathrm{7}}{\mathrm{8}} \\ $$$${find}\:\mathrm{cot}\:\left({x}\right)+\mathrm{cosec}\:\left({x}\right)\:=\: \\ $$
Question Number 82130 Answers: 0 Comments: 5
$$\mathrm{In}\:\mathrm{an}\:\mathrm{arrangement}\:\mathrm{of}\:\mathrm{the}\:\mathrm{word}\:\:\mathrm{VIOLENT},\:\mathrm{find}\:\mathrm{the}\:\mathrm{chances} \\ $$$$\mathrm{that}\:\mathrm{the}\:\mathrm{vowels}\:\:\:\mathrm{I},\:\mathrm{O},\:\mathrm{E}\:\:\:\mathrm{occupy}\:\mathrm{the}\:\mathrm{odd}\:\mathrm{positions}. \\ $$
Question Number 81954 Answers: 0 Comments: 6
$$\left.\:{soit}\:\alpha\in\right]\mathrm{0};\pi\left[.\:{determiner}:\right. \\ $$$$\left.\mathrm{1}\right){le}\:{module}\:{et}\:{l}'{argument}\:{de}: \\ $$$$\left.\boldsymbol{{a}}\left.\right)\mathrm{1}−\boldsymbol{{e}}^{\boldsymbol{{i}}\alpha} ,\boldsymbol{{b}}\right)\mathrm{1}+\boldsymbol{{e}}^{\boldsymbol{{i}\alpha}} \\ $$$$\left.\mathrm{2}\right)\boldsymbol{{deduire}}\:\boldsymbol{{le}}\:\boldsymbol{{module}}\:\boldsymbol{{et}}\:\boldsymbol{{l}}'\boldsymbol{{argument}}\:\boldsymbol{{de}} \\ $$$$\left.\:\left.\boldsymbol{{a}}\right)\:\frac{\mathrm{1}−\boldsymbol{{e}}^{\boldsymbol{{i}}\alpha} }{\mathrm{1}+{e}^{{i}\alpha} },\:{b}\right)\left(\mathrm{1}−{e}^{{i}\alpha} \right)\left(\mathrm{1}+{e}^{{i}\alpha} \right) \\ $$$$\:\boldsymbol{{rochinel}}\mathrm{930}@{gmail}.\boldsymbol{{c}} \\ $$
Question Number 81944 Answers: 2 Comments: 0
$${show}\:{that}\: \\ $$$${cot}\left(\mathrm{40}°\right)−{cot}\left(\mathrm{50}°\right)=\mathrm{2}{tan}\left(\mathrm{10}°\right) \\ $$$${cos}\left(\mathrm{70}°\right)\:{cos}\left(\mathrm{50}^{°} \right)\:{cos}\left(\mathrm{10}^{°} \right)=\frac{\sqrt{\mathrm{3}}}{\mathrm{8}} \\ $$
Question Number 81943 Answers: 0 Comments: 0
$$\mathrm{Evaluate}:\:\:\:\:\left(\frac{\sqrt{\mathrm{30}\:+\:\sqrt{\mathrm{8}}\:+\:\sqrt{\mathrm{5}}}}{\sqrt{\mathrm{8}}\:+\:\sqrt{\mathrm{5}}}\right)^{\mathrm{1}/\mathrm{4}} \\ $$
Question Number 81942 Answers: 1 Comments: 0
Pg 1316 Pg 1317 Pg 1318 Pg 1319 Pg 1320 Pg 1321 Pg 1322 Pg 1323 Pg 1324 Pg 1325
Terms of Service
Privacy Policy
Contact: info@tinkutara.com