Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1321

Question Number 81692    Answers: 0   Comments: 1

Question Number 81684    Answers: 1   Comments: 1

∫ (dx/(x^3 + 1)) = ...

$$\int\:\:\:\frac{{dx}}{{x}^{\mathrm{3}} \:+\:\mathrm{1}}\:\:=\:\:... \\ $$

Question Number 81720    Answers: 0   Comments: 2

let f(x)=arctan(1+x^2 ) 1) calculate f^((n)) (x) and f^((n)) (0) 2) developpf at integr serie

$${let}\:{f}\left({x}\right)={arctan}\left(\mathrm{1}+{x}^{\mathrm{2}} \right) \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{\left({n}\right)} \left({x}\right)\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\:{developpf}\:{at}\:{integr}\:{serie} \\ $$

Question Number 81719    Answers: 0   Comments: 1

1) find ∫ (dx/((x+2)^5 (x−3)^9 )) 2) calculate ∫_4 ^(+∞) (dx/((x+2)^5 (x−3)^9 ))

$$\left.\mathrm{1}\right)\:{find}\:\int\:\:\:\frac{{dx}}{\left({x}+\mathrm{2}\right)^{\mathrm{5}} \left({x}−\mathrm{3}\right)^{\mathrm{9}} } \\ $$$$ \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{4}} ^{+\infty} \:\frac{{dx}}{\left({x}+\mathrm{2}\right)^{\mathrm{5}} \left({x}−\mathrm{3}\right)^{\mathrm{9}} } \\ $$

Question Number 81674    Answers: 2   Comments: 3

Question Number 81672    Answers: 0   Comments: 3

If x ∈ R, the least value of the expression ((x^2 −6x+5)/(x^2 +2x+1)) is

$$\mathrm{If}\:{x}\:\in\:{R},\:\mathrm{the}\:\mathrm{least}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{expression}\:\frac{{x}^{\mathrm{2}} −\mathrm{6}{x}+\mathrm{5}}{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{1}}\:\mathrm{is} \\ $$

Question Number 81664    Answers: 0   Comments: 4

∫_(−π/4) ^(π/4) e^(−x) sin x dx =

$$\underset{−\pi/\mathrm{4}} {\overset{\pi/\mathrm{4}} {\int}}\:{e}^{−{x}} \:\mathrm{sin}\:{x}\:{dx}\:= \\ $$

Question Number 81663    Answers: 0   Comments: 2

∫_( 0) ^1 x (1−x)^n dx =

$$\:\underset{\:\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\:{x}\:\left(\mathrm{1}−{x}\right)^{{n}} \:{dx}\:= \\ $$

Question Number 81657    Answers: 0   Comments: 2

∫_0 ^3 ((x+1)/((x^2 +2x)^(15) ))=....

$$\:\:\underset{\mathrm{0}} {\overset{\mathrm{3}} {\int}}\frac{\mathrm{x}+\mathrm{1}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{2x}\right)^{\mathrm{15}} }=.... \\ $$

Question Number 81655    Answers: 0   Comments: 0

Question Number 81654    Answers: 0   Comments: 6

Question Number 81649    Answers: 0   Comments: 6

Question Number 81648    Answers: 0   Comments: 2

A team of 8 couples, (husband and wife) attend a lucky draw in which 4 persons picked up for a prize. Then the probability that there is at least one couple is

$$\mathrm{A}\:\mathrm{team}\:\mathrm{of}\:\mathrm{8}\:\mathrm{couples},\:\left(\mathrm{husband}\:\mathrm{and}\:\mathrm{wife}\right) \\ $$$$\mathrm{attend}\:\mathrm{a}\:\mathrm{lucky}\:\mathrm{draw}\:\mathrm{in}\:\mathrm{which}\:\mathrm{4}\:\mathrm{persons} \\ $$$$\mathrm{picked}\:\mathrm{up}\:\mathrm{for}\:\mathrm{a}\:\mathrm{prize}.\:\mathrm{Then}\:\mathrm{the}\:\mathrm{probability} \\ $$$$\mathrm{that}\:\mathrm{there}\:\mathrm{is}\:\mathrm{at}\:\mathrm{least}\:\mathrm{one}\:\mathrm{couple}\:\mathrm{is} \\ $$

Question Number 81647    Answers: 0   Comments: 8

how to prove that the number is divisible by 3, then the number of numbers is a multiple of 3

$$\mathrm{how}\:\mathrm{to}\:\mathrm{prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{number}\: \\ $$$$\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{3},\:\mathrm{then}\:\mathrm{the}\:\mathrm{number} \\ $$$$\mathrm{of}\:\mathrm{numbers}\:\mathrm{is}\:\mathrm{a}\:\mathrm{multiple}\:\mathrm{of}\:\mathrm{3} \\ $$

Question Number 81636    Answers: 0   Comments: 4

∫ ((x(tan^(−1) (x))^2 )/((1+x^2 )^(3/2) )) dx =

$$\int\:\frac{{x}\left(\mathrm{tan}^{−\mathrm{1}} \left({x}\right)\right)^{\mathrm{2}} }{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} }\:{dx}\:=\: \\ $$

Question Number 81629    Answers: 1   Comments: 0

Given vectors x=3i−6j−k, y=i+4j−3k and z=3i−4j+12k, then the projection of X×Y on vector Z is

$$\mathrm{Given}\:\mathrm{vectors}\:\boldsymbol{\mathrm{x}}=\mathrm{3}\boldsymbol{\mathrm{i}}−\mathrm{6}\boldsymbol{\mathrm{j}}−\boldsymbol{\mathrm{k}},\:\boldsymbol{\mathrm{y}}=\boldsymbol{\mathrm{i}}+\mathrm{4}\boldsymbol{\mathrm{j}}−\mathrm{3}\boldsymbol{\mathrm{k}} \\ $$$$\mathrm{and}\:\boldsymbol{\mathrm{z}}=\mathrm{3}\boldsymbol{\mathrm{i}}−\mathrm{4}\boldsymbol{\mathrm{j}}+\mathrm{12}\boldsymbol{\mathrm{k}},\:\mathrm{then}\:\mathrm{the}\:\mathrm{projection} \\ $$$$\mathrm{of}\:\boldsymbol{\mathrm{X}}×\boldsymbol{\mathrm{Y}}\:\mathrm{on}\:\mathrm{vector}\:\boldsymbol{\mathrm{Z}}\:\mathrm{is} \\ $$

Question Number 81615    Answers: 1   Comments: 0

∫_( 0) ^3 x (√(1+x)) dx =

$$\:\underset{\:\mathrm{0}} {\overset{\mathrm{3}} {\int}}\:{x}\:\sqrt{\mathrm{1}+{x}}\:{dx}\:= \\ $$

Question Number 81610    Answers: 1   Comments: 0

Question Number 81598    Answers: 0   Comments: 5

fog(x)=8x+3 g(x)=2x−1 f(x)=.....? gof(x)=6x+1 g(x)=5x+1 f(x)=.....? gof(x)=7x+9 f(x)=5x+2 g(x)=.....? f(x)=3x−8 gof(x)=8x+3 g(x)=.....? gof(x)=5x+1 f(x)=3x g(x)=....?

$$\mathrm{fog}\left(\mathrm{x}\right)=\mathrm{8x}+\mathrm{3} \\ $$$$\mathrm{g}\left(\mathrm{x}\right)=\mathrm{2x}−\mathrm{1} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=.....? \\ $$$$ \\ $$$$\mathrm{gof}\left(\mathrm{x}\right)=\mathrm{6x}+\mathrm{1} \\ $$$$\mathrm{g}\left(\mathrm{x}\right)=\mathrm{5x}+\mathrm{1} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=.....? \\ $$$$ \\ $$$$\mathrm{gof}\left(\mathrm{x}\right)=\mathrm{7x}+\mathrm{9} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{5x}+\mathrm{2} \\ $$$$\mathrm{g}\left(\mathrm{x}\right)=.....? \\ $$$$ \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{3x}−\mathrm{8} \\ $$$$\mathrm{gof}\left(\mathrm{x}\right)=\mathrm{8x}+\mathrm{3} \\ $$$$\mathrm{g}\left(\mathrm{x}\right)=.....? \\ $$$$ \\ $$$$\mathrm{gof}\left(\mathrm{x}\right)=\mathrm{5x}+\mathrm{1} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{3x} \\ $$$$\mathrm{g}\left(\mathrm{x}\right)=....? \\ $$$$ \\ $$

Question Number 81597    Answers: 0   Comments: 2

fog(x)=5x+6 f(x)=2x+1 g(x)=.....?

$$\mathrm{fog}\left(\mathrm{x}\right)=\mathrm{5x}+\mathrm{6} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{2x}+\mathrm{1} \\ $$$$\mathrm{g}\left(\mathrm{x}\right)=.....? \\ $$

Question Number 81596    Answers: 0   Comments: 2

f(x)=3x+1 , g(x)=2x+3 a). fog(x)=.... b). gof(x)=....

$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{3x}+\mathrm{1}\:,\:\:\mathrm{g}\left(\mathrm{x}\right)=\mathrm{2x}+\mathrm{3} \\ $$$$\left.\mathrm{a}\right).\:\mathrm{fog}\left(\mathrm{x}\right)=.... \\ $$$$\left.\mathrm{b}\right).\:\mathrm{gof}\left(\mathrm{x}\right)=.... \\ $$

Question Number 81595    Answers: 0   Comments: 2

8+4+2+1+.....∞=

$$\mathrm{8}+\mathrm{4}+\mathrm{2}+\mathrm{1}+.....\infty= \\ $$

Question Number 81591    Answers: 0   Comments: 6

if g(−2)=−5 and g′(x)= (x^2 /(cos^2 (x)+1)) find g(4)

$$\mathrm{if}\:\mathrm{g}\left(−\mathrm{2}\right)=−\mathrm{5}\:\mathrm{and}\: \\ $$$$\mathrm{g}'\left(\mathrm{x}\right)=\:\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{cos}\:^{\mathrm{2}} \left(\mathrm{x}\right)+\mathrm{1}} \\ $$$$\mathrm{find}\:\mathrm{g}\left(\mathrm{4}\right)\: \\ $$

Question Number 81586    Answers: 1   Comments: 6

Dear mister Tanmay y ′′ − y′ −6y = 2sin 3x find solution let y = e^(mx) ? or not

$${Dear}\:{mister}\: \\ $$$${Tanmay} \\ $$$${y}\:''\:−\:{y}'\:−\mathrm{6}{y}\:=\:\mathrm{2sin}\:\mathrm{3}{x}\: \\ $$$${find}\:{solution} \\ $$$$\: \\ $$$${let}\:{y}\:=\:{e}^{{mx}} \:?\:{or}\:{not}\: \\ $$$$ \\ $$

Question Number 81857    Answers: 0   Comments: 2

Question Number 81565    Answers: 1   Comments: 2

If f(x)= (tan x)^(cot x) + (cot x)^(tan x) f ′(x)= ?

$${If}\:{f}\left({x}\right)=\:\left(\mathrm{tan}\:{x}\right)^{\mathrm{cot}\:{x}} \:+\:\left(\mathrm{cot}\:{x}\right)^{\mathrm{tan}\:{x}} \\ $$$${f}\:'\left({x}\right)=\:? \\ $$

  Pg 1316      Pg 1317      Pg 1318      Pg 1319      Pg 1320      Pg 1321      Pg 1322      Pg 1323      Pg 1324      Pg 1325   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com