Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1321

Question Number 81149    Answers: 1   Comments: 0

Question Number 81139    Answers: 1   Comments: 6

Question Number 81133    Answers: 0   Comments: 1

find this ∫(1/(sin^2 x((cot^4 x))^(1/7) ))dx

$${find}\:{this}\: \\ $$$$\int\frac{\mathrm{1}}{{sin}^{\mathrm{2}} {x}\sqrt[{\mathrm{7}}]{{cot}^{\mathrm{4}} {x}}}{dx} \\ $$

Question Number 81134    Answers: 0   Comments: 0

prove A×B≠B×A with A and B are matrices

$${prove}\:{A}×{B}\neq{B}×{A} \\ $$$${with}\:{A}\:{and}\:{B}\:{are}\:{matrices} \\ $$

Question Number 81135    Answers: 1   Comments: 1

Question Number 81130    Answers: 0   Comments: 0

ζ(s)=0

$$\zeta\left({s}\right)=\mathrm{0} \\ $$

Question Number 81124    Answers: 1   Comments: 0

Question Number 81123    Answers: 0   Comments: 3

Question Number 81122    Answers: 1   Comments: 4

Question Number 81104    Answers: 0   Comments: 4

(a^ ×b^ ).c^ = (a×c) . (b×c). it right?

$$\left(\bar {{a}}\:×\bar {{b}}\:\right).\bar {{c}}\:=\:\left({a}×{c}\right)\:.\:\left({b}×{c}\right).\:{it}\:{right}? \\ $$

Question Number 81115    Answers: 0   Comments: 0

e^x ∫((2csec^2 θ dθ)/([4+(2tanθ)^2 ]^(3/2) )) = e^x ∫((2csec^2 θ dθ)/([4+(2tanθ)^2 ]^(3/2) )) =

$$\mathrm{e}^{\mathrm{x}} \int\frac{\mathrm{2}{csec}^{\mathrm{2}} \theta\:{d}\theta}{\left[\mathrm{4}+\left(\mathrm{2}{tan}\theta\right)^{\mathrm{2}} \right]^{\mathrm{3}/\mathrm{2}} }\:\:= \\ $$$$\mathrm{e}^{\mathrm{x}} \int\frac{\mathrm{2}{csec}^{\mathrm{2}} \theta\:{d}\theta}{\left[\mathrm{4}+\left(\mathrm{2}{tan}\theta\right)^{\mathrm{2}} \right]^{\mathrm{3}/\mathrm{2}} }\:\:= \\ $$

Question Number 81100    Answers: 0   Comments: 2

∫ ((x dx)/((tan x+cot x)^2 )) = ?

$$\int\:\frac{{x}\:{dx}}{\left(\mathrm{tan}\:{x}+\mathrm{cot}\:{x}\right)^{\mathrm{2}} }\:=\:? \\ $$

Question Number 81096    Answers: 1   Comments: 1

lim_(x→3) (((sin x)/(sin 3)))^(1/(x−3)) =?

$$\underset{{x}\rightarrow\mathrm{3}} {\mathrm{lim}}\:\left(\frac{\mathrm{sin}\:{x}}{\mathrm{sin}\:\mathrm{3}}\right)^{\frac{\mathrm{1}}{{x}−\mathrm{3}}} \:=? \\ $$

Question Number 81092    Answers: 0   Comments: 2

Question Number 81091    Answers: 0   Comments: 2

Question Number 81075    Answers: 2   Comments: 1

Question Number 81062    Answers: 0   Comments: 5

cos x (√(1+sin x−2cos x)) = cos x−sin x in [ −5π , −((7π)/2)]

$$\mathrm{cos}\:{x}\:\sqrt{\mathrm{1}+\mathrm{sin}\:{x}−\mathrm{2cos}\:{x}}\:=\:\mathrm{cos}\:{x}−\mathrm{sin}\:{x} \\ $$$${in}\:\left[\:−\mathrm{5}\pi\:,\:−\frac{\mathrm{7}\pi}{\mathrm{2}}\right]\: \\ $$

Question Number 81057    Answers: 0   Comments: 7

solve in [−π;π] (E): sin3x=−sin2x

$${solve}\:\mathrm{in}\:\left[−\pi;\pi\right]\: \\ $$$$\left({E}\right):\:{sin}\mathrm{3}{x}=−{sin}\mathrm{2}{x} \\ $$

Question Number 81054    Answers: 0   Comments: 2

solve the differential equation (a)(d^2 y/dx^2 )=sin^2 (x+y) (b)(d^2 y/dx^2 )=cos (x+y)

$${solve}\:{the}\:{differential} \\ $$$${equation} \\ $$$$\left({a}\right)\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }=\mathrm{sin}\:^{\mathrm{2}} \left({x}+{y}\right) \\ $$$$\left({b}\right)\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }=\mathrm{cos}\:\left({x}+{y}\right) \\ $$

Question Number 81043    Answers: 1   Comments: 8

∫ ((2e^(2x) −e^x )/(√(3e^(2x) −6e^x −1))) dx

$$\int\:\frac{\mathrm{2}{e}^{\mathrm{2}{x}} −{e}^{{x}} }{\sqrt{\mathrm{3}{e}^{\mathrm{2}{x}} −\mathrm{6}{e}^{{x}} −\mathrm{1}}}\:{dx} \\ $$

Question Number 81039    Answers: 0   Comments: 2

((log_( 0,2) (x−2))/((4^x −8)(∣x∣−5))) ≥ 0

$$\frac{\mathrm{log}_{\:\mathrm{0},\mathrm{2}} \left({x}−\mathrm{2}\right)}{\left(\mathrm{4}^{{x}} −\mathrm{8}\right)\left(\mid{x}\mid−\mathrm{5}\right)}\:\geqslant\:\mathrm{0} \\ $$

Question Number 81027    Answers: 0   Comments: 6

calculate lim_(x→0) ((tan(2x)−2tanx−2tan^3 x)/x^5 )

$${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\frac{{tan}\left(\mathrm{2}{x}\right)−\mathrm{2}{tanx}−\mathrm{2}{tan}^{\mathrm{3}} {x}}{{x}^{\mathrm{5}} } \\ $$

Question Number 81011    Answers: 0   Comments: 6

Question Number 81010    Answers: 0   Comments: 4

show that (cosθ−i sinθ)^n =(cosnθ−i sinθ)

$${show}\:{that} \\ $$$$\left({cos}\theta−{i}\:{sin}\theta\right)^{{n}} =\left({cosn}\theta−{i}\:{sin}\theta\right) \\ $$

Question Number 81008    Answers: 0   Comments: 1

Question Number 81007    Answers: 0   Comments: 1

if t_m +t_n and t_m −t_n is triangular number find the value of m+n

$${if}\:\:\:{t}_{{m}} +{t}_{{n}} \:{and}\:{t}_{{m}} −{t}_{{n}} \:{is}\:{triangular} \\ $$$${number}\:{find}\:{the}\:{value}\:{of}\:{m}+{n} \\ $$

  Pg 1316      Pg 1317      Pg 1318      Pg 1319      Pg 1320      Pg 1321      Pg 1322      Pg 1323      Pg 1324      Pg 1325   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com