Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1320
Question Number 79128 Answers: 1 Comments: 4
$${Find}\:{out}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}−{t}+{t}^{\mathrm{2}} \right){dt} \\ $$$${Then}\:{deduce}\:{the}\:{value}\:{of}\:\:\:{A}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}\left({n}+\mathrm{1}\right)\begin{pmatrix}{\mathrm{2}{n}+\mathrm{1}}\\{{n}}\end{pmatrix}} \\ $$
Question Number 79127 Answers: 2 Comments: 10
$$\:{Solve}\:\:{on}\:\mathbb{R}\ast\mathbb{R}\:\:{the}\:{following}\:{system} \\ $$$$\left\{_{\mathrm{9}^{{A}} +\mathrm{9}^{{B}} +\mathrm{9}^{{C}} =\mathrm{1}} ^{\mathrm{3}^{{A}} +\mathrm{3}^{{B}} +\mathrm{3}^{{C}} =\sqrt{\mathrm{3}}} \:\:\:\right. \\ $$
Question Number 79126 Answers: 1 Comments: 2
$${Study}\:\:\:{f}\left({x}\right)=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{{x}^{{n}} {sin}\left({nx}\right)}{{n}} \\ $$$${Find}\:{out}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \:\frac{{sin}\left({n}\right)}{{n}}\:\:\:{and}\:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{sin}\left({n}\right)}{{n}}\: \\ $$
Question Number 79124 Answers: 1 Comments: 1
$${Prove}\:{that}\: \\ $$$$\:\mathrm{16}{arctan}\left(\frac{\mathrm{1}}{\mathrm{5}}\right)−\mathrm{4}{arctan}\left(\frac{\mathrm{1}}{\mathrm{239}}\right)=\pi \\ $$$$ \\ $$
Question Number 79121 Answers: 1 Comments: 0
Question Number 79210 Answers: 0 Comments: 6
Question Number 79111 Answers: 0 Comments: 3
$$\mathrm{Show}\:\mathrm{that} \\ $$$$\mathrm{E}=\left\{\left({x},\mathrm{y},{z}\right)\:\in\:\mathbb{R}^{\mathrm{3}} \:\:/\:\:{x}−\mathrm{2}{y}+{z}=\mathrm{0}\right\} \\ $$$$\mathrm{is}\:\mathrm{a}\:\mathrm{subspace}\:\mathrm{vector}\:\mathrm{of}\:\mathrm{which}\:\mathrm{we} \\ $$$$\mathrm{will}\:\mathrm{determine}\:\mathrm{one}\:\mathrm{base}. \\ $$$$\mathrm{please}\:\mathrm{help}\:\mathrm{sirs}... \\ $$
Question Number 79108 Answers: 1 Comments: 1
$${decompose}\:{F}\left({x}\right)=\frac{{nx}^{{n}} }{{x}^{\mathrm{2}{n}} \:+\mathrm{1}}\:\:{inside}\:{C}\left({x}\right)\:{and}\:{R}\left({x}\right)\:\:\left({n}\geqslant\mathrm{2}\right) \\ $$$${and}\:{determine}\:\int_{\mathrm{0}} ^{+\infty} {F}\left({x}\right){dx} \\ $$
Question Number 79107 Answers: 2 Comments: 1
$${calculate}\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:{e}^{−\left({x}^{\mathrm{2}} \:+\frac{{a}}{{x}^{\mathrm{2}} }\right)} {dx}\:{with}\:{a}>\mathrm{0} \\ $$
Question Number 79106 Answers: 1 Comments: 2
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\left({x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)} {dx} \\ $$
Question Number 79105 Answers: 0 Comments: 0
$${caculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{\left({x}+\mathrm{1}\right)\left({x}+\mathrm{2}\right)....\left({x}+{n}\right)}\:\:{with}\:{n}\:{integr}\:\geqslant\mathrm{2} \\ $$
Question Number 79104 Answers: 0 Comments: 0
$${decompose}\:{F}\left({x}\right)=\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} −\mathrm{1}\right)\left({x}^{\mathrm{2}} −\mathrm{2}^{\mathrm{2}} \right)....\left({x}^{\mathrm{2}} −{n}^{\mathrm{2}} \right)}\:{inside}\:{R}\left({x}\right) \\ $$
Question Number 79103 Answers: 0 Comments: 1
$${calculate}\:{lim}_{{x}\rightarrow\mathrm{1}} \:\:\frac{{nx}^{{n}+\mathrm{1}} −\left({n}+\mathrm{1}\right){x}^{{n}} \:+\mathrm{1}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }\:\:{without}\:{hospital}\:{rule}. \\ $$
Question Number 79102 Answers: 0 Comments: 1
$${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\frac{{ln}\left(\mathrm{1}+{e}^{−{x}^{\mathrm{2}} } \right)−{ln}\left(\mathrm{2}\right)}{{x}^{\mathrm{2}} } \\ $$
Question Number 79101 Answers: 0 Comments: 1
$${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\:\frac{{sin}\left({e}^{−{x}^{\mathrm{2}} } \right)+{sinx}−{sin}\left(\mathrm{1}\right)}{{x}^{\mathrm{3}} } \\ $$
Question Number 79100 Answers: 0 Comments: 1
$${calculate}\:\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{x}^{\mathrm{2}} } }{\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right)^{\mathrm{3}} }{dx} \\ $$
Question Number 79098 Answers: 0 Comments: 0
$${calculate}\:\sum_{{n}=\mathrm{2}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{4}} −\mathrm{1}} \\ $$
Question Number 79097 Answers: 0 Comments: 0
$${find}\:\sum_{{n}=\mathrm{2}} ^{\infty} \:\:\frac{\mathrm{1}}{{n}^{\mathrm{4}} −\mathrm{1}} \\ $$
Question Number 79096 Answers: 1 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left({x}\right)}{\left(\mathrm{1}+{x}\right)^{\mathrm{3}} }{dx} \\ $$
Question Number 79095 Answers: 0 Comments: 1
$${find}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sin}\left({x}\right){sin}\left(\mathrm{2}{x}\right)....{sin}\left({nx}\right)}{{x}^{{n}} }{dx}\:\:{with}\:{n}\geqslant\mathrm{2}\:{integr} \\ $$
Question Number 79094 Answers: 1 Comments: 0
$${find}\:{I}_{{a},{b}} \:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sin}\left({ax}\right){sin}\left({bx}\right)}{{x}^{\mathrm{2}} }{dx}\:\:\:{witha}>\mathrm{0}\:{and}\:{b}>\mathrm{0} \\ $$
Question Number 79093 Answers: 0 Comments: 0
$${find}\:\:{f}\left(\lambda\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\lambda{x}^{\mathrm{2}} } {ch}\left({x}^{\mathrm{2}} \:+\lambda\right){dx}\:\:{with}\:\lambda>\mathrm{0} \\ $$
Question Number 79092 Answers: 0 Comments: 0
$${find}\:\int_{−\infty} ^{+\infty} \:\:\frac{{e}^{−{x}^{\mathrm{2}} } {arctan}\left({x}^{\mathrm{2}} +\mathrm{1}\right)}{{x}^{\mathrm{2}} \:+\mathrm{1}}{dx} \\ $$
Question Number 79091 Answers: 0 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{x}^{\mathrm{2}} } \:{arctan}\left({x}\right)}{{x}}{dx} \\ $$
Question Number 79089 Answers: 0 Comments: 2
Question Number 79086 Answers: 0 Comments: 2
$$\mathrm{if}:\int\mathrm{cos}\left(\mathrm{f}\left(\mathrm{x}\right)\right)\mathrm{dx}=\mathrm{g}\left(\mathrm{x}\right) \\ $$$$\int\mathrm{sin}\left(\mathrm{f}\left(\mathrm{x}\right)\right)\mathrm{dx}=?\:\left(\mathrm{use}\:\mathrm{g}\left(\mathrm{x}\right)\right) \\ $$
Pg 1315 Pg 1316 Pg 1317 Pg 1318 Pg 1319 Pg 1320 Pg 1321 Pg 1322 Pg 1323 Pg 1324
Terms of Service
Privacy Policy
Contact: info@tinkutara.com