Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1320

Question Number 79128    Answers: 1   Comments: 4

Find out ∫_0 ^1 ln(1−t+t^2 )dt Then deduce the value of A=Σ_(n=1) ^∞ (1/(n(n+1) (((2n+1)),(n) )))

$${Find}\:{out}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}−{t}+{t}^{\mathrm{2}} \right){dt} \\ $$$${Then}\:{deduce}\:{the}\:{value}\:{of}\:\:\:{A}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}\left({n}+\mathrm{1}\right)\begin{pmatrix}{\mathrm{2}{n}+\mathrm{1}}\\{{n}}\end{pmatrix}} \\ $$

Question Number 79127    Answers: 2   Comments: 10

Solve on R∗R the following system {_(9^A +9^B +9^C =1) ^(3^A +3^B +3^C =(√3))

$$\:{Solve}\:\:{on}\:\mathbb{R}\ast\mathbb{R}\:\:{the}\:{following}\:{system} \\ $$$$\left\{_{\mathrm{9}^{{A}} +\mathrm{9}^{{B}} +\mathrm{9}^{{C}} =\mathrm{1}} ^{\mathrm{3}^{{A}} +\mathrm{3}^{{B}} +\mathrm{3}^{{C}} =\sqrt{\mathrm{3}}} \:\:\:\right. \\ $$

Question Number 79126    Answers: 1   Comments: 2

Study f(x)=Σ_(n=1) ^∞ ((x^n sin(nx))/n) Find out Σ_(n=1) ^∞ (−1)^n ((sin(n))/n) and Σ_(n=1) ^∞ ((sin(n))/n)

$${Study}\:\:\:{f}\left({x}\right)=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{{x}^{{n}} {sin}\left({nx}\right)}{{n}} \\ $$$${Find}\:{out}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \:\frac{{sin}\left({n}\right)}{{n}}\:\:\:{and}\:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{sin}\left({n}\right)}{{n}}\: \\ $$

Question Number 79124    Answers: 1   Comments: 1

Prove that 16arctan((1/5))−4arctan((1/(239)))=π

$${Prove}\:{that}\: \\ $$$$\:\mathrm{16}{arctan}\left(\frac{\mathrm{1}}{\mathrm{5}}\right)−\mathrm{4}{arctan}\left(\frac{\mathrm{1}}{\mathrm{239}}\right)=\pi \\ $$$$ \\ $$

Question Number 79121    Answers: 1   Comments: 0

Question Number 79210    Answers: 0   Comments: 6

Question Number 79111    Answers: 0   Comments: 3

Show that E={(x,y,z) ∈ R^3 / x−2y+z=0} is a subspace vector of which we will determine one base. please help sirs...

$$\mathrm{Show}\:\mathrm{that} \\ $$$$\mathrm{E}=\left\{\left({x},\mathrm{y},{z}\right)\:\in\:\mathbb{R}^{\mathrm{3}} \:\:/\:\:{x}−\mathrm{2}{y}+{z}=\mathrm{0}\right\} \\ $$$$\mathrm{is}\:\mathrm{a}\:\mathrm{subspace}\:\mathrm{vector}\:\mathrm{of}\:\mathrm{which}\:\mathrm{we} \\ $$$$\mathrm{will}\:\mathrm{determine}\:\mathrm{one}\:\mathrm{base}. \\ $$$$\mathrm{please}\:\mathrm{help}\:\mathrm{sirs}... \\ $$

Question Number 79108    Answers: 1   Comments: 1

decompose F(x)=((nx^n )/(x^(2n) +1)) inside C(x) and R(x) (n≥2) and determine ∫_0 ^(+∞) F(x)dx

$${decompose}\:{F}\left({x}\right)=\frac{{nx}^{{n}} }{{x}^{\mathrm{2}{n}} \:+\mathrm{1}}\:\:{inside}\:{C}\left({x}\right)\:{and}\:{R}\left({x}\right)\:\:\left({n}\geqslant\mathrm{2}\right) \\ $$$${and}\:{determine}\:\int_{\mathrm{0}} ^{+\infty} {F}\left({x}\right){dx} \\ $$

Question Number 79107    Answers: 2   Comments: 1

calculate f(a) =∫_0 ^∞ e^(−(x^2 +(a/x^2 ))) dx with a>0

$${calculate}\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:{e}^{−\left({x}^{\mathrm{2}} \:+\frac{{a}}{{x}^{\mathrm{2}} }\right)} {dx}\:{with}\:{a}>\mathrm{0} \\ $$

Question Number 79106    Answers: 1   Comments: 2

calculate ∫_0 ^∞ e^(−(x^2 +(1/x^2 ))) dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\left({x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)} {dx} \\ $$

Question Number 79105    Answers: 0   Comments: 0

caculate ∫_0 ^∞ (dx/((x+1)(x+2)....(x+n))) with n integr ≥2

$${caculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{\left({x}+\mathrm{1}\right)\left({x}+\mathrm{2}\right)....\left({x}+{n}\right)}\:\:{with}\:{n}\:{integr}\:\geqslant\mathrm{2} \\ $$

Question Number 79104    Answers: 0   Comments: 0

decompose F(x)=(1/((x^2 −1)(x^2 −2^2 )....(x^2 −n^2 ))) inside R(x)

$${decompose}\:{F}\left({x}\right)=\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} −\mathrm{1}\right)\left({x}^{\mathrm{2}} −\mathrm{2}^{\mathrm{2}} \right)....\left({x}^{\mathrm{2}} −{n}^{\mathrm{2}} \right)}\:{inside}\:{R}\left({x}\right) \\ $$

Question Number 79103    Answers: 0   Comments: 1

calculate lim_(x→1) ((nx^(n+1) −(n+1)x^n +1)/((x−1)^2 )) without hospital rule.

$${calculate}\:{lim}_{{x}\rightarrow\mathrm{1}} \:\:\frac{{nx}^{{n}+\mathrm{1}} −\left({n}+\mathrm{1}\right){x}^{{n}} \:+\mathrm{1}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }\:\:{without}\:{hospital}\:{rule}. \\ $$

Question Number 79102    Answers: 0   Comments: 1

calculate lim_(x→0) ((ln(1+e^(−x^2 ) )−ln(2))/x^2 )

$${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\frac{{ln}\left(\mathrm{1}+{e}^{−{x}^{\mathrm{2}} } \right)−{ln}\left(\mathrm{2}\right)}{{x}^{\mathrm{2}} } \\ $$

Question Number 79101    Answers: 0   Comments: 1

calculate lim_(x→0) ((sin(e^(−x^2 ) )+sinx−sin(1))/x^3 )

$${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\:\frac{{sin}\left({e}^{−{x}^{\mathrm{2}} } \right)+{sinx}−{sin}\left(\mathrm{1}\right)}{{x}^{\mathrm{3}} } \\ $$

Question Number 79100    Answers: 0   Comments: 1

calculate ∫_0 ^∞ (((−1)^x^2 )/((x^2 −x+1)^3 ))dx

$${calculate}\:\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{x}^{\mathrm{2}} } }{\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right)^{\mathrm{3}} }{dx} \\ $$

Question Number 79098    Answers: 0   Comments: 0

calculate Σ_(n=2) ^∞ (((−1)^n )/(n^4 −1))

$${calculate}\:\sum_{{n}=\mathrm{2}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{4}} −\mathrm{1}} \\ $$

Question Number 79097    Answers: 0   Comments: 0

find Σ_(n=2) ^∞ (1/(n^4 −1))

$${find}\:\sum_{{n}=\mathrm{2}} ^{\infty} \:\:\frac{\mathrm{1}}{{n}^{\mathrm{4}} −\mathrm{1}} \\ $$

Question Number 79096    Answers: 1   Comments: 1

calculate ∫_0 ^∞ ((ln(x))/((1+x)^3 ))dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left({x}\right)}{\left(\mathrm{1}+{x}\right)^{\mathrm{3}} }{dx} \\ $$

Question Number 79095    Answers: 0   Comments: 1

find A_n =∫_0 ^∞ ((sin(x)sin(2x)....sin(nx))/x^n )dx with n≥2 integr

$${find}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sin}\left({x}\right){sin}\left(\mathrm{2}{x}\right)....{sin}\left({nx}\right)}{{x}^{{n}} }{dx}\:\:{with}\:{n}\geqslant\mathrm{2}\:{integr} \\ $$

Question Number 79094    Answers: 1   Comments: 0

find I_(a,b) =∫_0 ^∞ ((sin(ax)sin(bx))/x^2 )dx witha>0 and b>0

$${find}\:{I}_{{a},{b}} \:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sin}\left({ax}\right){sin}\left({bx}\right)}{{x}^{\mathrm{2}} }{dx}\:\:\:{witha}>\mathrm{0}\:{and}\:{b}>\mathrm{0} \\ $$

Question Number 79093    Answers: 0   Comments: 0

find f(λ) =∫_0 ^∞ e^(−λx^2 ) ch(x^2 +λ)dx with λ>0

$${find}\:\:{f}\left(\lambda\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\lambda{x}^{\mathrm{2}} } {ch}\left({x}^{\mathrm{2}} \:+\lambda\right){dx}\:\:{with}\:\lambda>\mathrm{0} \\ $$

Question Number 79092    Answers: 0   Comments: 0

find ∫_(−∞) ^(+∞) ((e^(−x^2 ) arctan(x^2 +1))/(x^2 +1))dx

$${find}\:\int_{−\infty} ^{+\infty} \:\:\frac{{e}^{−{x}^{\mathrm{2}} } {arctan}\left({x}^{\mathrm{2}} +\mathrm{1}\right)}{{x}^{\mathrm{2}} \:+\mathrm{1}}{dx} \\ $$

Question Number 79091    Answers: 0   Comments: 0

calculate ∫_0 ^∞ ((e^(−x^2 ) arctan(x))/x)dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{x}^{\mathrm{2}} } \:{arctan}\left({x}\right)}{{x}}{dx} \\ $$

Question Number 79089    Answers: 0   Comments: 2

Question Number 79086    Answers: 0   Comments: 2

if:∫cos(f(x))dx=g(x) ∫sin(f(x))dx=? (use g(x))

$$\mathrm{if}:\int\mathrm{cos}\left(\mathrm{f}\left(\mathrm{x}\right)\right)\mathrm{dx}=\mathrm{g}\left(\mathrm{x}\right) \\ $$$$\int\mathrm{sin}\left(\mathrm{f}\left(\mathrm{x}\right)\right)\mathrm{dx}=?\:\left(\mathrm{use}\:\mathrm{g}\left(\mathrm{x}\right)\right) \\ $$

  Pg 1315      Pg 1316      Pg 1317      Pg 1318      Pg 1319      Pg 1320      Pg 1321      Pg 1322      Pg 1323      Pg 1324   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com