Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1320

Question Number 78627    Answers: 0   Comments: 0

explicite f(x)=∫_(−∞) ^(+∞) ((arctan(xt +1))/(t^2 +x^2 ))dt with x>0

$${explicite}\:{f}\left({x}\right)=\int_{−\infty} ^{+\infty} \:\frac{{arctan}\left({xt}\:+\mathrm{1}\right)}{{t}^{\mathrm{2}} \:+{x}^{\mathrm{2}} }{dt}\:\:{with}\:{x}>\mathrm{0} \\ $$

Question Number 78625    Answers: 0   Comments: 1

calculate ∫_(−∞) ^(+∞) ((arctan(x^2 −3))/((x^2 +x+1)^2 ))dx

$${calculate}\:\:\int_{−\infty} ^{+\infty} \:\frac{{arctan}\left({x}^{\mathrm{2}} −\mathrm{3}\right)}{\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$

Question Number 78624    Answers: 0   Comments: 0

calculate ∫_0 ^(π/4) e^(−2x) ln(1+cosx)dx

$${calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {e}^{−\mathrm{2}{x}} {ln}\left(\mathrm{1}+{cosx}\right){dx} \\ $$

Question Number 78623    Answers: 1   Comments: 0

calculate lim_(x→0) (((√(1+x+x^2 +....+x^n )) −1)/x^(n/2) )

$${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\frac{\sqrt{\mathrm{1}+{x}+{x}^{\mathrm{2}} +....+{x}^{{n}} }\:\:−\mathrm{1}}{{x}^{\frac{{n}}{\mathrm{2}}} } \\ $$

Question Number 78622    Answers: 0   Comments: 1

calculate lim_(n→+∞) ∫_0 ^n (1−(t/n))^n ln(1+nt)dt

$${calculate}\:{lim}_{{n}\rightarrow+\infty} \:\:\:\:\:\int_{\mathrm{0}} ^{{n}} \left(\mathrm{1}−\frac{{t}}{{n}}\right)^{{n}} {ln}\left(\mathrm{1}+{nt}\right){dt} \\ $$

Question Number 78621    Answers: 0   Comments: 1

calculate lim_(x→1) ∫_x ^x^3 ((sh(xt^2 ))/(sin(xt)))dt

$${calculate}\:{lim}_{{x}\rightarrow\mathrm{1}} \:\:\:\:\int_{{x}} ^{{x}^{\mathrm{3}} } \:\:\frac{{sh}\left({xt}^{\mathrm{2}} \right)}{{sin}\left({xt}\right)}{dt} \\ $$

Question Number 78620    Answers: 1   Comments: 0

explicit f(x) =∫_0 ^(+∞) ln(1−xe^(−t) )dt with ∣x∣<1

$${explicit}\:\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{+\infty} {ln}\left(\mathrm{1}−{xe}^{−{t}} \right){dt}\:\:{with}\:\mid{x}\mid<\mathrm{1} \\ $$

Question Number 78609    Answers: 0   Comments: 0

Question Number 78628    Answers: 2   Comments: 1

Find minimum value of y = ((2x)/(x^2 + x + 1)) x , y ∈ R Without Differential

$${Find}\:\:{minimum}\:\:{value}\:\:{of} \\ $$$$\:\:\:\:\:\:\:{y}\:\:=\:\:\frac{\mathrm{2}{x}}{{x}^{\mathrm{2}} \:+\:{x}\:+\:\mathrm{1}} \\ $$$${x}\:,\:{y}\:\:\in\:\:\mathbb{R} \\ $$$${Without}\:\:{Differential} \\ $$

Question Number 78596    Answers: 1   Comments: 1

lim_(x→0) (1−3tan^2 x)^((2/(sin^2 3x)) ) = ?

$$ \\ $$$$ \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\mathrm{1}−\mathrm{3tan}\:^{\mathrm{2}} \mathrm{x}\right)^{\frac{\mathrm{2}}{\mathrm{sin}\:^{\mathrm{2}} \:\mathrm{3x}}\:\:\:} =\:?\: \\ $$

Question Number 78581    Answers: 0   Comments: 4

∫ ((2xsin 2x)/((2x−sin 2x)^2 )) dx ?

$$\int\:\frac{\mathrm{2}{x}\mathrm{sin}\:\mathrm{2}{x}}{\left(\mathrm{2}{x}−\mathrm{sin}\:\mathrm{2}{x}\right)^{\mathrm{2}} }\:{dx}\:? \\ $$

Question Number 78578    Answers: 0   Comments: 0

Question Number 78575    Answers: 1   Comments: 0

∫ (√(tan x)) dx

$$\int\:\sqrt{\mathrm{tan}\:\mathrm{x}}\:\:\mathrm{dx} \\ $$

Question Number 78569    Answers: 1   Comments: 0

which of the following is increasing or decreasing a. u_n = ((n!)/n^n ) b. u_n = (4^n /(3^n +1)) c. u_n = (2^n /n^2 )

$${which}\:{of}\:{the}\:{following}\:{is}\:{increasing}\:{or}\:{decreasing} \\ $$$${a}.\:\:{u}_{{n}} \:=\:\frac{{n}!}{{n}^{{n}} } \\ $$$${b}.\:\:{u}_{{n}} =\:\frac{\mathrm{4}^{{n}} }{\mathrm{3}^{{n}} +\mathrm{1}} \\ $$$${c}.\:{u}_{{n}} =\:\frac{\mathrm{2}^{{n}} }{{n}^{\mathrm{2}} } \\ $$

Question Number 78568    Answers: 1   Comments: 0

Find the roots of the equation bx^3 − (3b + 2)x^2 − 2(5b − 3)x + 20 = 0

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\:\mathrm{bx}^{\mathrm{3}} \:−\:\left(\mathrm{3b}\:+\:\mathrm{2}\right)\mathrm{x}^{\mathrm{2}} \:−\:\mathrm{2}\left(\mathrm{5b}\:−\:\mathrm{3}\right)\mathrm{x}\:+\:\mathrm{20}\:\:=\:\:\mathrm{0} \\ $$

Question Number 78567    Answers: 0   Comments: 9

Question Number 78564    Answers: 1   Comments: 1

Question Number 78563    Answers: 0   Comments: 0

Question Number 78549    Answers: 1   Comments: 0

Question Number 78542    Answers: 0   Comments: 0

Question Number 78526    Answers: 0   Comments: 14

lim_(x→0) [((∫_( 0) ^( x^2 ) (√(4 + t^3 )) dt)/x^2 )]

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\left[\frac{\int_{\:\:\mathrm{0}} ^{\:\:\boldsymbol{\mathrm{x}}^{\mathrm{2}} } \:\sqrt{\mathrm{4}\:+\:\boldsymbol{\mathrm{t}}^{\mathrm{3}} }\:\:\boldsymbol{\mathrm{dt}}}{\boldsymbol{\mathrm{x}}^{\mathrm{2}} }\right] \\ $$

Question Number 78522    Answers: 0   Comments: 10

what is the line passing through (2,2,1) and parallel to 2i^ − j^ − k^ ?

$${what}\:{is}\:{the}\: \\ $$$${line}\:{passing}\:{through}\:\left(\mathrm{2},\mathrm{2},\mathrm{1}\right) \\ $$$${and}\:{parallel}\:{to}\:\mathrm{2}\hat {{i}}\:−\:\hat {{j}}\:−\:\hat {{k}}\:? \\ $$

Question Number 78503    Answers: 3   Comments: 0

if x,y >1 prove (x^2 /(y−1))+(y^2 /(x−1))≥8

$${if}\:{x},{y}\:>\mathrm{1}\: \\ $$$${prove}\:\frac{{x}^{\mathrm{2}} }{{y}−\mathrm{1}}+\frac{{y}^{\mathrm{2}} }{{x}−\mathrm{1}}\geqslant\mathrm{8} \\ $$

Question Number 78496    Answers: 1   Comments: 4

Question Number 78493    Answers: 2   Comments: 0

the sum to infinity of a Geometric series is S the sum to infinty of the squares of the terms of the series is 2S the sum to infinity of the cubes of the terms of the series is ((64)/(13))S. find the value of S and write iut the first 3 terms if the series.

$${the}\:{sum}\:{to}\:{infinity}\:{of}\:{a}\:{Geometric}\:{series}\:{is}\:{S} \\ $$$${the}\:{sum}\:{to}\:{infinty}\:{of}\:{the}\:{squares}\:{of}\:{the}\:{terms} \\ $$$${of}\:{the}\:{series}\:{is}\:\mathrm{2}{S} \\ $$$${the}\:{sum}\:{to}\:{infinity}\:{of}\:{the}\:{cubes}\:{of}\:{the}\:{terms} \\ $$$${of}\:{the}\:{series}\:{is}\:\frac{\mathrm{64}}{\mathrm{13}}{S}. \\ $$$${find}\:{the}\:{value}\:{of}\:{S}\:{and}\:{write}\:{iut}\:{the}\:{first} \\ $$$$\mathrm{3}\:{terms}\:{if}\:{the}\:{series}. \\ $$

Question Number 78490    Answers: 1   Comments: 0

Find out A =Σ_(n=2) ^∞ ((ζ(n))/(n(−3)^n )) where ζ(p)=Σ_(n=1) ^∞ (1/n^p )

$$\mathrm{Find}\:\mathrm{out}\:\mathrm{A}\:=\underset{\mathrm{n}=\mathrm{2}} {\overset{\infty} {\sum}}\:\:\frac{\zeta\left(\mathrm{n}\right)}{\mathrm{n}\left(−\mathrm{3}\right)^{\mathrm{n}} }\:\:\:\:\:\:\:\:\:\:\:\mathrm{where}\:\:\zeta\left(\mathrm{p}\right)=\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{p}} }\: \\ $$

  Pg 1315      Pg 1316      Pg 1317      Pg 1318      Pg 1319      Pg 1320      Pg 1321      Pg 1322      Pg 1323      Pg 1324   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com